Topological superfluid phase of polar fermionic molecules

Nigel Cooper Cavendish Laboratory, University of Cambridge

> "Topological Order" Workshop MPIPKS, Dresden, 15 July 2009.

Gora Shlyapnikov, LPTMS Orsay, Paris

Overview

- 2D $p_x + ip_y$ superfluid
- topological aspects
- atomic Fermi gas
- Dipolar interactions
- dressed polar molecules
- superfluid pairing
- stability
- Experimental consequences

2D $p_x + ip_y$ superfluid

BCS pairing of spinless fermions

$$\Delta_{\boldsymbol{k}} \sim \left\langle \hat{c}_{\boldsymbol{k}} \hat{c}_{-\boldsymbol{k}} \right\rangle = -\Delta_{-\boldsymbol{k}}$$

 $\Delta_{k} \sim k_x + ik_y$

Quasiparticle spectrum

$$\epsilon_{\mathbf{k}} = \sqrt{\xi_k^2 + |\Delta_{\mathbf{k}}|^2} \qquad \xi_k \equiv \frac{\hbar^2 k^2}{2M} - \mu$$

Fully gapped for $\mu \neq 0$

 $\mu < 0$ and $\mu > 0$ separated by a *topological phase transition* [Volovik, JETP 1988]

$$\epsilon_{oldsymbol{k}} = \sqrt{\xi_k^2 + |\Delta_{oldsymbol{k}}|^2} \qquad \xi_k \equiv rac{\hbar^2 k^2}{2M} - \mu$$

"pseudospin" $\vec{n}_{k} \equiv (\text{Re}\Delta_{k}, \text{Im}\Delta_{k}, \xi_{k}) / \epsilon_{k}$ $|\vec{n}_{k}|^{2} = 1$

Topological classification $\pi_2(S^2) = \mathbb{Z}$

 $\Delta_{k} \sim k_{x} + ik_{y}$ $\mu < 0$: topologically trivial (vacuum) $\mu > 0$: "skyrmion" in *k*-space

[Volovik, JETP 1988]

- Gapless mode between $\mu > 0$ phase and vacuum ($\mu < 0$).
- Zero-energy states on vortices of the $\mu > 0$ phase.

Non-abelian exchange statistics

 $p_x + ip_y$ superfluid of composite fermions \Leftrightarrow Moore-Read (Pfaffian) FQH state [Read & Green, PRB **61**, 10267 (2000)]

quantized vortices \Leftrightarrow FQH quasiparticles

One zero-energy Majorana mode per vortex \Rightarrow groundstate degeneracy, $2^{N_V/2-1}$.

Braiding of vortices \Rightarrow non-abelian exchange statistics [Ivanov, PRL 86, 268 (2001)]

Can one realize this $p_x + ip_y$ phase in a ultracold Fermi gas?

For two-component atomic Fermi gas with "spin-orbit" interaction:

[Zhang, Tewari, Lutchyn and Das Sarma, PRL (2008); Sato, Takahashi, Fujimoto, PRL (2009).]

One-Component Atomic Fermi Gas

• Ultracold limit $k_F R_0 \ll 1 \Rightarrow p$ -wave interactions very weak

BCS $T_c \sim E_F e^{-\#/(k_F R_0)^2}$ is vanishingly small.

• Feshbach resonance: formation of *p*-wave boundstate

However... close to a p-wave Feshbach resonance

Dimer formation ⇒collisional relaxation [Levinsen, NRC & Gurarie, PRL 99, 210402 (2007); Jona-Lasinio, Pricoupenko & Castin, PRA 77, 043611 (2008).]

Lifetime of ⁶Li dimers \sim 6ms. [Gaebler *et al.* [JILA], PRL **98**, 200403 (2007)]

Dipolar Interactions

Can one engineer the 2D $k_x + ik_y$ phase?

Dressed Polar Molecules

[NRC & Shlyapnikov, preprint]

2D centre-of-mass motion, but 3D rotational levels:

 $|J, M_J\rangle \qquad \langle \boldsymbol{d} \rangle = 0$

+ circularly polarized MW field

 $|1,-1\rangle \qquad |1,0\rangle \qquad |1,1\rangle \qquad \delta \\ |1,1\rangle \qquad \omega_0 \\ \Omega_R \qquad 0 \\ |0,0\rangle \qquad 0$

[cf. Gorshkov et al., PRL 101, 073201 (2008)]

detuning $\delta \equiv \omega - \omega_0$ Rabi frequency Ω_R Rotating wave approximation, $\delta, \Omega_R \ll \omega_0 \Rightarrow$ field-dressed states

$$|+\rangle = a|0,0\rangle + be^{-i\omega t}|1,1\rangle \qquad |-\rangle = b|0,0\rangle - ae^{-i\omega t}|1,1\rangle$$

$$\langle +|d|+\rangle = d_{\text{eff}} (\cos \omega t, \sin \omega t, 0)$$

$$v_0(r,\theta;t) = \frac{d_{\text{eff}}^2}{r^3} [1-3\cos^2(\omega t-\theta)] \qquad 0.125$$

$$\overline{V_0}(r) = -\frac{d_{\text{eff}}^2}{2r^3}$$

$$r^* \equiv \frac{Md_{\text{eff}}^2}{2h^2}$$

$$0.15$$

$$0.12$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.14$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

$$0.145$$

Superfluid Transition

Vertex function (E = 0)

$$\Gamma(\boldsymbol{k}, \boldsymbol{q}) = V_0(\boldsymbol{k} - \boldsymbol{q}) - \int \frac{d^2 \boldsymbol{q}'}{(2\pi)^2} \frac{\Gamma(\boldsymbol{k}, \boldsymbol{q}') V_0(\boldsymbol{q} - \boldsymbol{q}')}{E_{q'}}$$
$$E_q = \hbar^2 q^2 / 2M$$

BCS gap equation

$$\Delta_{\boldsymbol{k}} = -\int \frac{d^2 \boldsymbol{q}}{(2\pi)^2} \Gamma(\boldsymbol{k}, \boldsymbol{q}) \frac{\Delta_{\boldsymbol{q}}}{2} \left[\frac{\tanh(\epsilon_{\boldsymbol{q}}/2T)}{\epsilon_{\boldsymbol{q}}} - \frac{1}{E_q} \right]$$
$$\epsilon_{\boldsymbol{q}} = \sqrt{(E_q - \mu)^2 + |\Delta_{\boldsymbol{q}}|^2}$$

Born approx. $\Gamma(\boldsymbol{k}, \boldsymbol{q}) \simeq V_0(\boldsymbol{k} - \boldsymbol{q})$

• $\underline{T \rightarrow 0}$

Most stable phase has $\Delta_{m k} \sim (k_x \pm i k_y)$

• BCS limit, $k_F r^* \lesssim 1$

$$T_c \simeq E_F \exp\left(-\frac{3\pi}{4k_F r^*}\right)$$

(K-T transition temperature similar [Miyake, Prog. Theor. Phys. (1983)])

cf. short-range potential, $T_c \simeq E_F \exp\left(-\frac{\#}{k_F^2 R_0^2}\right)$ $1/r^3 \Rightarrow$ "anomalous" scattering from $r \sim 1/k$

Feasibility?

• Atoms: BCS
$$T_c \simeq E_F \ e^{-\frac{\#}{k_F^2 R_0^2}}$$

Feshbach resonance ⇒dimer formation ⇒collisional relaxation [Levinsen, NRC & Gurarie, PRL (2007); Jona-Lasinio, Pricoupenko & Castin, PRA (2008).]

• Polar mols: BCS
$$T_c \simeq E_F e^{-\frac{3\pi}{4k_F r^*}}$$

$$r^* \equiv \frac{M d_{\text{eff}}^2}{2\hbar^2}$$

 T_c can be large without dimer formation

2-body losses

suppression of inelastic losses for $r_{\delta}/\lambda_{\delta} \gg 1$

Example: ⁷Li⁴⁰K

dipole moment d = 3.5 D $\Omega_R/\delta = 0.25 \Rightarrow r^* \simeq 200$ nm $n = 2 \times 10^8 \text{cm}^{-2} \Rightarrow k_F r^* \simeq 1$ • $E_F \simeq 120 \text{nK}$

• $T_c \simeq 10 \mathrm{nK}$

For $r_{\delta} \simeq 30 \text{ nm} \Rightarrow \alpha_{\text{loss}} \simeq 4 \times 10^{-4} \frac{\hbar}{M}$

•
$$\tau_{\rm loss} = 1/(\alpha_{\rm loss}n) \sim 1{\rm s}$$

[M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005)]

Experimental Consequences

Field-dressed polar molecules are in the topological phase $p_x + ip_y$, $\mu > 0$.

Vortices carry zero energy Majorana modes. [Volovik; Read & Green]

• Non-abelian statistics

[Tewari, Das Sarma, Nayak, Zhang & Zoller, PRL 98, 010506 (2007)]

Summary

• Field-dressed polar molecules in 2D can have strong attractive interactions.

• For a one-component gas of fermionic molecules, the groundstate is the $p_x + ip_y$ superfluid phase with interesting topological properties.

• Energy scales and inelastic lifetimes appear favourable.

• These systems could allow the detection of Majorana modes on vortices, and non-abelian exchange statistics.