Adiabatic Preparation of Vortex Lattices

Nigel Cooper Cavendish Laboratory, University of Cambridge

"Synthetic Gauge Fields for Photons and Atoms" Trento, 1 July 2013

Stefan Baur & NRC, arXiv:1306.4796

Engineering and Physical Sciences Research Council

Vortex Lattices in Rotating BECs

Rotating frame, angular velocity Ω

Coriolis Force \Leftrightarrow Lorentz Force \Rightarrow flux density $n_{\phi} \equiv \frac{qB}{h} = \frac{2M\Omega}{h}$

⇒vortex lattice

[Madison, Chevy, Bretin & Dalibard, PRL 84, 806 (2000)]

Vortex Lattice Formation

Surface instability [Dalfovo & Stringari, PRA 2000; Madison et al., PRL 2001; Feder et al. PRL 2001;

Lobo, Sinatra & Castin, PRL 2004]

- e.g. [K. Kasamatsu, M. Machida, N. Sasa
- & M. Tsubota, PRA 71, 063616 (2005)]

Optically Induced Gauge Fields

[Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto & I.B. Spielman, Nature 462, 628 (2009)]

Synthetic Magnetic Fields in Optical Lattices

• Tight-binding lattices + tunneling phases

[Jaksch & Zoller '03; Mueller '04; Sørensen, Demler & Lukin '05; Gerbier & Dalibard '10; Struck et al. '12]

• "Optical flux lattices" [NRC '11; NRC & Dalibard '11, '13; Juzeliūnas & Spielman '12]

$$\hat{H} = \frac{\mathbf{p}^2}{2M}\hat{\mathbb{I}} + \hat{V}(\mathbf{r})$$

• Very high vortex densities $n_{\phi} \sim rac{1}{\sqrt{2}}$

Outline

Optical Flux Lattices

Tight-Binding Lattices

Nigel Cooper Cavendish Laboratory, University of Cambridge Adiabatic Preparation of Vortex Lattices

Optically Induced Gauge Fields

[J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, RMP 83, 1523 (2011)]

$$\hat{H} = \frac{\mathbf{p}^2}{2M}\hat{\mathbb{I}} + \hat{V}(\mathbf{r})$$

Coherent optical coupling of N internal atomic states

[e.g. ${}^{1}S_{0}$ and ${}^{3}P_{0}$ for Yb or alkaline earth atom]

RWA
$$\hat{V}(\mathbf{r}) \rightarrow \frac{\hbar}{2} \begin{pmatrix} \Delta & \Omega_R(\mathbf{r}) \\ \Omega_R^*(\mathbf{r}) & -\Delta \end{pmatrix}$$

In general
$$\hat{V}(\mathbf{r}) = \frac{\hbar}{2} \begin{pmatrix} \Delta(\mathbf{r}) & \Omega_R(\mathbf{r}) \\ \Omega_R^*(\mathbf{r}) & -\Delta(\mathbf{r}) \end{pmatrix}$$
 varying on scale λ

K.E. $\sim E_{\rm R} = rac{\hbar^2}{2M\lambda^2} \ll E_1 - E_0$: adiabatic motion in state $|0_r\rangle$

 $|\psi(\mathbf{r})
angle=\psi_0(\mathbf{r})|0_{\mathbf{r}}
angle$

"Berry connection" \Rightarrow vector potential $q\mathbf{A} = i\hbar\langle 0_{\mathbf{r}} | \nabla 0_{\mathbf{r}} \rangle$ flux density $n_{\phi} \equiv \frac{qB}{h} = \frac{1}{h} \nabla \times (q\mathbf{A})$ [J. Dalibard, F. Gerbier, G. Juzeliūnas & P. Öhberg, RMP 83, 1523 (2011)]

Optical Flux Lattices

Optical lattices of $\hat{V}(\mathbf{r})$ with non-zero mean flux density

$$n_{\phi} \equiv rac{qB}{h} = rac{1}{h} oldsymbol{
abla} imes [i\hbar \langle 0_{\mathsf{r}} | oldsymbol{
abla} 0_{\mathsf{r}}
angle] \sim rac{1}{\lambda^2}$$

Various implementations:

- 2 electronic states ("clock" transition) [NRC, PRL '11]
- Hyperfine levels (e.g. K, Rb) [NRC & Dalibard, EPL '11; Juzeliūnas & Spielman, NJP '12]
- Beyond SU(2) (3 hyperfine/orbital states) [NRC & Dalibard, PRL '13]

Triangular Optical Flux Lattice

$$\hat{V} = V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$$

[NRC, Phys. Rev. Lett. 106, 175301 (2011)]

 $\theta = 2\pi/3$

Triangular Optical Flux Lattice

 $\hat{V} = V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$

Expect vortex lattice with $N_{\phi} = 2$ vortices in this cell

Adiabatic Formation: Essential Idea

[Stefan Baur & NRC, arXiv:1306.4796]

$$\hat{H} = \frac{\mathbf{p}^2}{2M} \hat{\mathbb{I}}_2 + V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$$

Adiabatic Formation: Essential Idea

[Stefan Baur & NRC, arXiv:1306.4796]

$$\hat{H} = \frac{\mathbf{p}^2}{2M} \hat{\mathbb{I}}_2 + V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$$

1. Start with BEC for $V_0 = 0$

Adiabatic Formation: Essential Idea

[Stefan Baur & NRC, arXiv:1306.4796]

$$\hat{H} = \frac{\mathbf{p}^2}{2M} \hat{\mathbb{I}}_2 + V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$$

- 1. Start with BEC for $V_0 = 0$
- 2. Ramp up to $V_0 \gtrsim E_{
 m R}$

Adiabatic Formation: Essential Idea

[Stefan Baur & NRC, arXiv:1306.4796]

$$\hat{H} = \frac{\mathbf{p}^2}{2M} \hat{\mathbb{I}}_2 + V_0 \left[\hat{\sigma}_x \cos(\kappa_1 \cdot \mathbf{r}) + \hat{\sigma}_y \cos(\kappa_2 \cdot \mathbf{r}) + \hat{\sigma}_z \cos(\kappa_3 \cdot \mathbf{r}) \right]$$

- 1. Start with BEC for $V_0 = 0$
- 2. Ramp up to $V_0 \gtrsim E_{
 m R}$ $[E_{
 m R} = \frac{\hbar^2 \kappa^2}{2M}]$
- 3. That's it!

More carefully: Bandstructure

Nigel Cooper Cavendish Laboratory, University of Cambridge Adiabatic Preparation of Vortex Lattices

Break degeneracy

(i) Detuning
$$\Rightarrow \hat{V}(\mathbf{r}) \rightarrow \hat{V}(\mathbf{r}) + \delta \hat{\sigma}_z$$

(ii) Weak interactions

$$E_{\rm int} = \int d^2 \mathbf{r} \; \frac{g_{\uparrow\uparrow}}{2} n_{\uparrow}^2(\mathbf{r}) + \frac{g_{\downarrow\downarrow}}{2} n_{\downarrow}^2(\mathbf{r}) + g_{\uparrow\downarrow} n_{\uparrow}(\mathbf{r}) n_{\downarrow}(\mathbf{r})$$

e.g. $g_{\uparrow\downarrow}>g_{\downarrow\downarrow}>g_{\uparrow\uparrow}>0$ [phase separation, favouring spin \uparrow]

Initialize the condensate in the spin- \uparrow state, $\mathbf{k} = 0$

$$\phi = \sqrt{n_0} \left(\begin{array}{c} 1 \\ 0 \end{array} \right)$$

Evolves continuously to eigenstate of "+" minimum

 \Rightarrow Adiabatic route to a stable vortex lattice

Vortex Lattice?

[Stefan Baur & NRC, arXiv:1306.4796]

1.0 0.5 y/a 0.0 -0.5-1.00.50.0 0.51.0x/a

particle density (colours) current density (vectors)

 $(V_0 = 4E_{\rm R})$

Rectangular vortex lattice (pinned to lattice)

Continuity

Current increases continuously as the lattice depth is increased

+ smooth growth of density modulation

Vortex cores?

Phase singularity

$$\psi({f r})=\psi(r, heta)\sim r\,e^{i heta}$$

 \Rightarrow vanishing density at vortex core

How can a "zero" appear smoothly?

Vortex cores?

Phase singularity

$$\psi({f r})=\psi(r, heta)\sim r\,e^{i heta}$$

 \Rightarrow vanishing density at vortex core

How can a "zero" appear smoothly?

In general $|\psi(\mathbf{r})\rangle = \psi_0(\mathbf{r})|\mathbf{0}_{\mathbf{r}}\rangle + \psi_1(\mathbf{r})|\mathbf{1}_{\mathbf{r}}\rangle$

vortex in component-0 filled by component-1 ("coreless vortex")

[Mermin & Ho, PRL '76]

$$V_0 \gg E_{\mathsf{R}}$$
 $|\psi(\mathbf{r})\rangle \rightarrow \psi_0(\mathbf{r})|0_{\mathsf{r}}\rangle$

Outline

Optical Flux Lattices

Tight-Binding Lattices

Nigel Cooper Cavendish Laboratory, University of Cambridge Adiabatic Preparation of Vortex Lattices

Tight-binding lattice

Imprint phases on tunneling matrix elements

[Jaksch & Zoller '03; Mueller '04; Sørensen, Demler & Lukin '05; Gerbier & Dalibard 2010; Struck et al. (2012)]

Nigel Cooper Cavendish Laboratory, University of Cambridge

Adiabatic Preparation of Vortex Lattices

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

For fixed unit cell, vary phase $\alpha = 0 \rightarrow 2\pi/3$

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

For fixed unit cell, vary phase $\alpha = 0 \rightarrow 2\pi/3$ e.g. RF + Raman $Ke^{i\phi} = K_{\rm RF} + K_{\rm Raman}e^{-i\frac{2\pi}{3a}y}$

[I. Bloch]

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

For fixed unit cell, vary phase $\alpha = 0 \rightarrow 2\pi/3$ e.g. RF + Raman $Ke^{i\phi} = K_{\rm RF} + K_{\rm Raman}e^{-i\frac{2\pi}{3a}y}$

[I. Bloch]

Lowest energy band becomes

Adiabatic Route: Essential Idea

e.g. $\alpha = 2\pi/3$

magnetic unit cell

For <u>fixed unit cell</u>, vary phase $\alpha = 0 \rightarrow 2\pi/3$ e.g. RF + Raman $Ke^{i\phi} = K_{\rm RF} + K_{\rm Raman}e^{-i\frac{2\pi}{3a}y}$

[I. Bloch]

⇒transfer to a BEC in one of these degenerate minima

But... unstable to interactions

Three degenerate minima \Rightarrow BEC in any superposition $\sqrt{n_0} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$

+ weak repulsive interactions

$$E_{\rm int} = \frac{1}{2} U \sum_i n_i^2$$

Lowest-energy BEC involves translational symmetry breaking (vortex lattice!) [Straley & Barnett, PRB '93; Powell *et al.*, PRL '10;

Zhang et al., PRL '10]

Naive geometry (1x3) does not load the BEC into this state

Nigel Cooper Cavendish Laboratory, University of Cambridge Adiabatic Preparation of Vortex Lattices

 $-\overline{K'e^{i\alpha}}$

Adiabatic route to vortex lattice

 $-K'e^{-i\alpha}$

(a)

Adiabatic Preparation of Vortex Lattices

 -2α

 α

 α

2) Vary
$$r = 1 \rightarrow 0$$
: uniform BEC \rightarrow stable vortex lattice

(1) Choose unit cell to match target lattice geometry

(b)

Nigel Cooper Cavendish Laboratory, University of Cambridge

Evolution

Evolution

BEC evolves into favoured vortex lattice for $\alpha = \frac{2\pi}{3}$ (r = 0)

Evolution

BEC evolves into favoured vortex lattice for $\alpha = \frac{2\pi}{3}$ (r = 0)

Nigel Cooper Cavendish Laboratory, University of Cambridge Adiabatic Preparation of Vortex Lattices

Summary

- ► Vortex lattices, with $n_{\phi} \sim 1/\lambda^2$, can be prepared by adiabatic loading of a BEC into lattices with synthetic magnetic fields.
- Vortex lattice current patterns appear smoothly, without the need for vortices to "enter" from the sides.
- Interactions lift degeneracies and select the vortex lattice geometry. A carefully chosen route is needed for adiabaticity.
- ► A useful starting point for the creation of strongly correlated phases, with n ~ n_φ.