Topological Phases of Matter Out of Equilibrium

Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge

Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019

Max McGinley (Cambridge)

Marcello Caio (KCL/Leiden), Gunnar Moller (Kent), Joe Bhaseen (KCL)

Engineering and Physical Sciences Research Council

SIMONS FOUNDATION

Topological Invariants

<u>2D Bloch Bands</u> [Thouless, Kohmoto, Nightingale & den Nijs, PRL 1982]

Chern number:

$$\nu = \frac{1}{2\pi} \int_{\rm BZ} d^2 k \ \Omega_k \leftarrow$$

Berry curvature: $\Omega_k = -i\nabla_k \times \langle u_k | \nabla_k u_k \rangle \cdot \hat{z}$

- ν cannot change under smooth deformations
- Insulating bulk with u gapless edge states

Topological Insulators

- Many generalisations when symmetries are included: [Hasan & Kane, RMP 2010] topological insulators/superconductors in all spatial dimensions
 - ⇒ bulk gap + gapless surface states
 - Time reversal symmetry (non-magnetic system in vanishing magnetic field)
 - "Chiral" (sublattice) symmetry e.g. Su-Schrieffer-Heeger model

⇒ Detailed classification of topological matter at equilibrium

[Here for free fermions, but also for strongly interacting systems]

Non-Equilibrium Dynamics?

[unitary evolution]

e.g. dynamical change in band topology

- Preparation of topological phases?
- Is there a topological classification of *non-equilibrium* many-body states?

- Dynamics of Chern Insulators (2D)
- Dynamics of Topological Phases in ID
- Topological Classification Out of Equilibrium

- Dynamics of Chern Insulators (2D)
- Dynamics of Topological Phases in ID
- Topological Classification Out of Equilibrium

Dynamics of Chern Insulators (2D)

Quench: start in ground state of \hat{H}^{i} then time evolve under \hat{H}^{f}

Time-evolving Bloch state of fermion at k

 $|u_{k}(t)\rangle = \exp(-i\hat{H}_{k}^{\mathrm{f}}t)|u_{k}(0)\rangle$

$$\Omega_{k}(t) = -i\nabla_{k} \times \langle u_{k}(t) | \nabla_{k} u_{k}(t) \rangle \cdot \hat{z}$$

⇒ Chern number of the many-body state is preserved

[D'Alessio & Rigol, Nat. Commun. 2015; Caio, NRC & Bhaseen, PRL 2015]

["topological invariant" under smooth changes of the Bloch states]

Nigel Cooper, University of Cambridge

Dynamics of Chern Insulators: Physical Consequences

- Obstruction to preparation of a state with differing Chern number [For slow ramps, $\tau \gg L/v$, deviations can be small]
- Chern number can be obtained by tomography of Bloch states [Two-band model: $|u_k\rangle = \cos(\theta_k/2) |A, k\rangle + \sin(\theta_k/2) e^{i\phi_k} |B, k\rangle$]

[Fläschner et al. [Hamburg], Science 2016]

• Topological of *final* Hamiltonian can be obtained by tracking the evolution of the Bloch states in time

[Wang et al. [Tsinghua], PRL 2017; Tarnowski et al. [Hamburg], arXiv 2017]

Dynamics of Chern Insulators in Real Space

[Caio, Möller, NRC & Bhaseen, Nat. Phys. 2019]

Quench dynamics involves flow of the Chern marker

Nigel Cooper, University of Cambridge

- Dynamics of Chern Insulators (2D)
- Dynamics of Topological Phases in ID
- Topological Classification Out of Equilibrium

Dynamics of Topological Phases in ID (Free Fermions)

In ID all topological invariants can be determined from

$$\mathrm{CS}_{1} = \frac{1}{2\pi} \int_{\mathrm{BZ}} dk \, \langle u_{k} | \, \partial_{k} u_{k} \rangle$$

Equivalently: Berry phase around the Brillouin zone (Zak phase)

Only quantized in the presence of symmetries

In ID, topology must be protected by symmetry

Example: Su-Schrieffer-Heeger Model

$$-\underline{A} - \underline{B} - \underline{A} - \underline{B} - \underline{B} - \underline{A} - \underline{A} - \underline{B} - \underline{A} - \underline{A} - \underline{B} - \underline{A} -$$

$$H_k = -\begin{pmatrix} 0 & J' + Je^{-ika} \\ J' + Je^{ika} & 0 \end{pmatrix} = -\mathbf{h}(k) \cdot \boldsymbol{\sigma}$$

"Chiral" (sublattice) symmetry $\Rightarrow h = (h_x, h_y, 0) \Rightarrow h_x + ih_y = |h(k)| e^{i\phi(k)}$ $\Rightarrow CS_1 = N/2$ winding number $N = \frac{1}{2\pi} \int_{BZ} \frac{d\phi}{dk} dk$ integer -2-2

Is this topological invariant preserved out of equilibrium?

No... need to consider symmetries!

Nigel Cooper, University of Cambridge

Symmetry-Protected Topology Out of Equilibrium

[Max McGinley & NRC, PRL 2018]

- Start in ground state of \mathscr{H}_i then time evolve under \mathscr{H}_f
- \mathscr{H}_{f} breaks symmetry \Rightarrow topological "invariant" can vary

["explicit symmetry breaking"]

• What if \mathscr{H}_{f} respects the symmetry?

Symmetry can still be broken!

• Anti-unitary symmetries $[\langle \mathcal{O}\Psi, \mathcal{O}\Phi \rangle = \langle \Phi, \Psi \rangle^*]$

$$\mathcal{O}e^{-i\mathcal{H}t}\mathcal{O}^{-1} = e^{+i\mathcal{H}t}$$

Symmetry broken in the non-equilibrium state

["dynamically induced symmetry breaking"]

Topological invariant time-varying even if symmetries respected!

Time-Varying $CS_1(t)$: Physical Consequences

[Max McGinley & NRC, PRL 2018]

- Could be observed in Bloch state tomography [cf. Chern number]
- Directly measure via $\frac{d}{dt}$ CS₁(t) = j(t) = $\dot{Q}(t)$

[cf. Chern number \neq Hall conductance out of equilibrium]

Example: quenches in a generalised SSH model

AllI: chiral symmetry only

BDI: time-reversal, particle-hole & chiral

How can we define topology out of equilibrium?

Nigel Cooper, University of Cambridge

- Dynamics of Chern Insulators (2D)
- Dynamics of Topological Phases in ID
- Topological Classification Out of Equilibrium

Topological Classification Out Of Equilibrium

[Max McGinley & NRC, PRL 2018]

- Equilibrium topological phase \Rightarrow gapless surface states
- Non-equilibrium topological state ⇒ gapless entanglement spectrum

Example: quenches in a generalised SSH model

⇒ meaningful topological classification out of equilibrium

Generalization to Interacting SPT Phases

[Max McGinley & NRC, PRL 2018]

Example: Haldane phase of a S=1 spin chain is an SPT phase that can be protected by a variety of symmetries:

- Time-reversal symmetry (anti-unitary)
- Dihedral symmetry (unitary)

Generalization to other Spatial Dimensions

"Ten-fold way" for free fermions

[Chiu, Teo, Schnyder & Ryu, RMP 2016]

[Time-reversal, particle-hole & chiral symmetries]

	symmetries			spatial dimension								
Class	T	С	S	0	1	2	3	4	5	6	7	
A	0	0	0	\mathbb{Z}	0		0	\mathbb{Z}	0	\mathbb{Z}	0	
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AI	+	0	0	\mathbb{Z}	0	0	0	2Z	0	\mathbb{Z}_2	\mathbb{Z}_2	
BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	_	+	1	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2Z	
AII	_	0	0	2Z	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
CII	_	—	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	0	
С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	—	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2^-	\mathbb{Z}_2	\mathbb{Z}	

Topological Classification Out Of Equilibrium

"Ten-fold way" for free fermions

[Chiu, Teo, Schnyder & Ryu, RMP 2016]

[Time-reversal, particle-hole & chiral symmetries]

Non-Equilibrium Classification

[Max McGinley & NRC, arXiv:1811.00889]

Class	Sy	mmeti	ries		Spatial dimension d							
	Т	С	S	0	1	2	3	4	5	6	7	
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AIII	0	0	1	0	$(\mathbb{Z} \rightarrow 0)$	0	$\mathbb{Z} \to 0$	0	$\mathbb{Z} \to 0$	0	$\mathbb{Z} \to 0$	
AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 \to 0$	
BDI	+	+	1	\mathbb{Z}_2	$\mathbb{Z} \to \mathbb{Z}_2$	0	0	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 \to 0$	
D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
DIII	_	+	1	0	$\mathbb{Z}_2 o 0$	$\mathbb{Z}_2 \to 0$	$\mathbb{Z} \to 0$	0	0	0	$2\mathbb{Z} \to 0$	
AII	_	0	0	$2\mathbb{Z}$	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 o 0$	\mathbb{Z}	0	0	0	
CII	_	_	1	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 o 0$	\mathbb{Z}_2	$\mathbb{Z} \to \mathbb{Z}_2$	0	0	
С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
CI	+	—	1	0	0	0	$2\mathbb{Z} \to 0$	0	$\mathbb{Z}_2 \to 0$	$\mathbb{Z}_2 o 0$	$\mathbb{Z} \to 0$	

Physical Consequences of Non-Equilibrium Classification

[Max McGinley & NRC, arXiv:1811.00889]

- Preparation of topological states
 - \Rightarrow States with non-trivial index cannot be prepared on timescales short compared to the inverse level spacing $\sim L/v$
- Stability of "topologically protected" boundary modes
 - ⇒ Adiabatic mixing of Kramers pairs under braiding [Wölms, Stern & Flensberg, PRL 2014]
 - ⇒ Decoherence of Majorana qubit memories due to *noi*se

Retrieval of quantum information via "recovery fidelity" [Mazza, Rizzi, Lukin & Cirac, PRB 2013]

Nigel Cooper, University of Cambridge

- There exists a topological classification of non-equilibrium quantum states, which differs from that at equilibrium:
 - ⇒ bulk-boundary correspondence applies to the entanglement spectrum.

[holds also for interacting and disordered systems]

- For 2D systems, the Chern number is preserved under unitary dynamics. However, there can be a spatial flow of the local Chern marker.
- More generally, topological "invariants" can vary in time
 in ID such variations appear as a current
 - \Rightarrow no obstruction to changing the topology of the state dynamically
 - ⇒ sensitivity of "topologically protected" degrees of freedom to noise