An adaptive Langevin thermostat for non-equilibrium molecular dynamics simulations

Steven Winfield

ESDG
21st May 2008
Outline

Molecular Dynamics

Thermostats

Adaptive Langevin thermostat

Conclusions and Further Work
Why do we do MD simulations?

- To calculate observables - static, dynamic
- To see what happens
Changing Ensemble

- MD is nominally energy conserving - NVE ensemble
- Usually more interested in NVT or NPT ensemble
- Need temperature regulation - Thermostat
Thermostatted MD

- A thermostat alters the forces and/or velocities
- These alterations can be deterministic or stochastic
Non-equilibrium MD

Non-equilibrium simulations or bad equilibrium simulations generate heat:

- Non-Hamiltonian
- QM/MM with discontinuous force calculation
- $F \neq -\nabla U$

Here we can only hope a thermostat gives the correct average temperature.
<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rescaling</td>
<td>Andersen</td>
</tr>
<tr>
<td>Rescale velocities such that</td>
<td>Every M steps choose a particle and reassign its velocity from Maxwellian distribution</td>
</tr>
<tr>
<td>$E_k = \frac{1}{2} N_{dof} k_B T$</td>
<td></td>
</tr>
<tr>
<td>Nosé-Hoover</td>
<td>Langevin</td>
</tr>
<tr>
<td>Hoover, PhysRevA 31 1695</td>
<td>Quigley, Probert, JChemPhys 120(24) 11432</td>
</tr>
<tr>
<td>$\dot{r}_i = \frac{p_i}{m_i}$</td>
<td>$\dot{r}_i = \frac{p_i}{m_i}$</td>
</tr>
<tr>
<td>$\dot{p}_i = F_i - \xi p_i$</td>
<td>$\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}_i(t)$</td>
</tr>
<tr>
<td>$Q \dot{\xi} = \sum_i \frac{p_i^2}{m_i} - N_{dof} k_B T$</td>
<td>$\Gamma = 2\gamma m_i k_B T$ $\langle \tilde{A}_i(t) \rangle = 0$</td>
</tr>
<tr>
<td></td>
<td>$\langle \tilde{A}_i(t) \tilde{A}j(t') \rangle = \delta{ij} \delta(t - t')$</td>
</tr>
<tr>
<td>Deterministic</td>
<td>Stochastic</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Rescaling Temp. gradients**</td>
<td>Andersen Unphysical (MC)</td>
</tr>
<tr>
<td>Rescale velocities such that</td>
<td>Every M steps choose a particle and reassign</td>
</tr>
<tr>
<td>$E_k = \frac{1}{2} N_{\text{dof}} k_B T$</td>
<td>its velocity from Maxwellian distribution</td>
</tr>
<tr>
<td>Nosé-Hoover Bad sampling</td>
<td>Langevin No feedback</td>
</tr>
<tr>
<td>Hoover, PhysRevA 31 1695</td>
<td>Quigley, Probert, JChemPhys 120(24) 11432</td>
</tr>
<tr>
<td>$\dot{r}_i = \frac{p_i}{m_i}$</td>
<td>$\dot{r}_i = \frac{p_i}{m_i}$</td>
</tr>
<tr>
<td>$\dot{p}_i = F_i - \xi p_i$</td>
<td>$\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}_i(t)$</td>
</tr>
<tr>
<td>$Q \dot{\xi} = \sum_i \frac{p_i^2}{m_i} - N_{\text{dof}} k_B T$</td>
<td>$\Gamma = 2\gamma m_i k_B T$ $\langle \tilde{A}_i(t) \rangle = 0$</td>
</tr>
<tr>
<td></td>
<td>$\langle \tilde{A}_i(t) \tilde{A}j(t') \rangle = \delta{ij} \delta(t - t')$</td>
</tr>
</tbody>
</table>
Nosé-Hoover Thermostat

The Nosé-Hoover thermostat relies on chaotic trajectories

R.G. Winkler et. al., JChemPhys 102(22) 9018
Langevin Thermostat

The Langevin thermostat cannot be used when there is heating - incorrect average temperature:

1728 Si atoms, with Stillinger-Weber potential
Requirements

- Feedback - Nosé-Hoover
- Stochastic - Langevin
- Modified Fluctuation-Dissipation relation
 Kühne et al., PRL 98 066401 (2007)
Equations of Motion

\[
\dot{r}_i = \frac{p_i}{m_i}
\]

\[
\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}(t)
\]
Equations of Motion

\[\dot{r}_i = \frac{p_i}{m_i} \]

\[\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}(t)s(t) \]

\[\dot{s} = \left(1 - \frac{\langle T_k \rangle_\tau}{T} \right) \beta \]

\[\langle f(t) \rangle_\tau = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{t'-t}{\tau}} f(t') dt' \]

Choose \(\beta \) such that oscillations in \(s \), and so \(\langle T_k \rangle \), are critically damped (approximately)
Equations of Motion

\[\dot{r}_i = \frac{p_i}{m_i} \]

\[\dot{p}_i = F_i - \gamma p_i + \sqrt{\Gamma} \tilde{A}(t)s(t) \]

\[\dot{s} = \left(1 - \frac{\langle T_k \rangle T}{\tau} \right) \beta \]

\[\langle f(t) \rangle_{\tau} = \frac{1}{\tau} \int_{-\infty}^{t} e^{\frac{t'-t}{\tau}} f(t')dt' \]

Choose \(\beta \) such that oscillations in \(s \), and so \(\langle T_k \rangle \), are critically damped (approximately)

Caveat: \(s < 0 \) makes no sense (\(\tilde{A} \) and \(-\tilde{A} \) have same properties)
Results
Conclusions and Further Work

Conclusions:

- Adding simple feedback to Langevin thermostat allows it to deal with non-equilibrium systems
- Canonical velocity distributions are recovered

Further Work:

- Recover Newtonian dynamics when temperature is OK
- Re-derive using Fokker-Planck equation in extended phase-space
Conclusions and Further Work

Conclusions:

- Adding simple feedback to Langevin thermostat allows it to deal with non-equilibrium systems
- Canonical velocity distributions are recovered

Further Work:

- Recover Newtonian dynamics when temperature is OK
 Leimkuhler et al., JChemPhys 128 074105
- Re-derive using Fokker-Planck equation in extended phase-space
Thank-you for listening!

Any questions?
Nosé-Hoover-Langevin Thermostat?

\[\dot{r}_i = \frac{p_i}{m_i} \]
\[\dot{p}_i = F_i - \xi p_i \]
\[Q\dot{\xi} = \left[\sum_i \frac{p_i^2}{m_i} - Nk_B T \right] - \gamma Q\xi + \sqrt{\Gamma} \tilde{A}(t) \]
\[\Gamma = 2\gamma Qk_B T \]

- Gives canonical probability density in equilibrium simulations
- Has feedback to deal with non-equilibrium simulations
- When temperature has stabilised, \(\xi \) decays - dynamics is more Newtonian