All-electron Quantum Monte Carlo using Slater-type orbitals

Norbert Nemec

ESDG Cambridge, 14th January 2009

Slater-type orbitals (STO)

• Introduced by J. C. Slater [Phys. Rev. 36, 57 (1930)]

$$\psi_{\zeta n l m}(r, \theta, \varphi) = R_{\zeta n}(r) \Psi_{l m}(\vartheta, \varphi)$$
$$R_{\zeta m}(r) = r^{n-1} e^{-\zeta r}$$

- \rightarrow inspired by the eigenstates of the hydrogen atom
- \rightarrow nodeless radial function $(r^{n-1} \text{ instead of Laguerre polynomials})$
- → multiple- ζ basis sets for higher precision (typically up to quadruple- ζ) [typical basis set notation: DZ ("double- ζ ") TZ2P ("triple- ζ , doubly polarized")]

PROs and CONs of STOs

PROs

- + localised basis
- + very small basis set

($\sim 1/2$ the size of a contracted gaussian basis for similar precision)

Norbert Nemec

- + correct electron-nucleus cusp by simple linear constraint
- + well-behaved asymptotics

CONs

- no asymptotic basis set completion
- very demanding numerical integration

ADF

(Amsterdam Density Functional package)

 \rightarrow The only (?) production-quality electronic structure code based on STOs.

- includes various libraries of basis sets up to QZ4P
- frozen core approximation optional (no pseudopotentials)
- implements Hartree-Fock, DFT and hybrids
- user-friendly interface (also GUI) and excellent documentation (including export data formats)

Norbert Nemec

• ADF for molecules, BAND for 1d, 2d and 3d periodic systems

 \rightarrow http://www.scm.com

STO vs. gaussian - atoms

UNIVERSITY OF CAMBRIDGE

STO vs. gaussian - molecules

 \rightarrow # electrons

The electron-nucleus cusp

 \rightarrow Tosio Kato [Comm. Pure Appl. Math. **10**, 151 (1957)] Kato cusp condition for electronic wavefunction near nucleus (point charge):

$$\left(\frac{\partial \langle \Psi \rangle}{\partial r}\right)_{r \to 0} = -Z \langle \Psi \rangle_{r=0}$$

Norbert Nemec

 $[\langle\Psi
angle$: spherical average of wfn at distance r from nucleus]

HF/DFT — appropriate basis set necessary to represent wave function near nucleus

(e.g. contracted gaussians)

QMC — cusp condition has to be exactly satisfied to prevent divergent local energy

Ma et al., J. Chem. Phys. 122, 224322 (2005)

Cusp corrections for gaussian orbitals

 \rightarrow Ma, Towler, Drummond and Needs [J. Chem. Phys. 122, 224322 (2005)]

• Replace wfn near nucleus by polynomial that exactly satisfied cusp

Linear cusp constraints for STOs

Basis set (unnormalized):

 $\psi_i(\boldsymbol{r}) = Y_{l_i,m_i}(\vartheta(\boldsymbol{r}-\boldsymbol{R}_i),\varphi(\boldsymbol{r}-\boldsymbol{R}_i)) \times |\boldsymbol{r}-\boldsymbol{R}_i|^{n_i} \times \exp(-\zeta_i|\boldsymbol{r}-\boldsymbol{R}_i|)$ One molecular orbital: $\Psi(\boldsymbol{r}) = \sum_i c_i \psi_i(\boldsymbol{r}-\boldsymbol{R}_i)$

One linear constraint per nucleus I at position R_I :

$$\left. \left\langle \frac{\mathrm{d}}{\mathrm{d}r} \Psi(\boldsymbol{r}) \right\rangle \right|_{\boldsymbol{r}=\boldsymbol{R}_{I}} = -Z_{I} \Psi(\boldsymbol{R}_{I})$$

 \rightarrow LHS depends only on local 1s and 2s basis functions:

$$\langle \partial_r \Psi \rangle_{R_I} = -\sum_{i \in (1s,I)} \zeta_i c_i + \sum_{i \in (2s,I)} c_i$$

 \rightarrow RHS depends only on local 1s and all nonlocal basis functions:

$$\Psi(\boldsymbol{R}_{I}) = \sum_{i \in (1s,I)} c_{i} + \sum_{i \notin (I)} c_{i} \psi_{i}(\boldsymbol{R}_{I} - \boldsymbol{R}_{i})$$

Linear cusp constraints for STOs

Linear constraint for nucleus *I*:

$$-\sum_{i\in(1s,I)}\zeta_{i}c_{i}+\sum_{i\in(2s,I)}c_{i} = -Z_{I}\left(\sum_{i\in(1s,I)}c_{i}+\sum_{i\notin(I)}c_{i}\psi_{i}(R_{I}-R_{i})\right)$$

Cusp constraint vector χ^I for nucleus I (depends on basis set only):

$$\sum_{i} \chi_{i}^{I} c_{i} = 0$$

Enforcing cusp constraints (c-c)

- unconstrained molecular orbital $C \in \operatorname{Vec}(N_{\operatorname{bas}})$
- c-c-matrix $\chi \in Mat(N_{nuc} \times N_{bas})$
- find constrained orbitals C' satisfying cusp condition: $\chi C' \!=\! 0$
- select $N_{
 m nuc}$ c-c-orbitals (the narrowest s-type orbital of each nucleus) $\rightarrow \zeta_{
 m cc}$ should be larger than Z+1 to prevent long-ranged effects
- assume coefficients ordered as $\begin{pmatrix} C_{cc} \\ C_{non-cc} \end{pmatrix}$
- split χ into blocks $(\chi_{cc} \chi_{non-cc})$ \rightarrow cusp condition: $\chi_{cc}C'_{cc} + \chi_{non-cc}C'_{non-cc} = 0$

$$C'_{\rm cc} := -\chi_{\rm cc}^{-1}\chi_{\rm non-cc}C_{\rm non-cc} \qquad C'_{\rm non-cc} = C_{\rm non-cc}$$

 $(\chi_{cc}^{-1} \text{ ill-conditioned only if } \zeta_{cc} \text{ close to } Z)$

The effects of cusp-constraints

Norbert Nemec

12

Comparison of timing

all runs: NaCl molecule (28 electrons), 500000 VMC steps/proc

	<pre># of basis functions</pre>	WFDET total (sec)
gaussian (no CC)	70	40.6
gaussian (gauss. CC)	70	41.3
gaussian (gen. purp)	70	40.6
STO (TZP)	51	37.3
STO (pVQZ)	83	46.4
STO (QZ4P)	110	62.0

 \rightarrow performance of STO in QMC similar to that of gaussians

Atomic energies

Norbert Nemec

14

Atomic energies - compare STO with numerical

 \rightarrow numerical basis set data by M.D.Brown et al [J. Chem. Phys. **126**, 224110 (2007)]

STO (pVQZ basis) allow same precision as numerical orbitals \rightarrow basis set limit reached within target precision

Molecules - atomization energies (G2 set)

- J. C. Grossman [J. Chem. Phys. 117, 1434 (2002)]: pseudopotential DMC
- M.D. Towler [unpublished]: CASINO DMC using gaussian orbitals

UNIVERSITY OF

CAMBRIDGE

• Feller et al. [J. Chem. Phys. 129, 204105 (2008)]: CCSDT+corrections

Technical details for DMC calculations

- STO/pVQZ basis set, LDA trial wavefunction
- optimized Slater-Jastrow term: C = 3, $N_u = N_\chi = 10$, $N_F = 3$
- using MADMIN \rightarrow recovering avg. 75% of correlation energy
- DMC computing time: ~1 CPU hour / electron (at dtdmc=0.005)

- target population: 100 walkers, using weighted DMC (lwdmc)
- using automatic reblocking (thanks, Pablo!)

Overall quality of G2 energies

mean abs dev J.C.Grossman 2002 pseudopotential DMC 2.9 kcal/mol M.D.Towler 200? CASINO AE-DMC (Gaussians) 4.7 kcal/mol D.Feller et al. 2008 CCSD(T) + corrections 0.2 kcal/mol my attempt 2009 CASINO AE-DMC (STO) 4.6 kcal/mol

experimental precision

Norbert Nemec

0.3 kcal/mol

Error sources:

- timestep error <1.9 kcal/mol (< $\langle |E_{dt=0.01} E_{dt=0.005}| \rangle$)
- statistical error <0.46 kcal/mol
- population control error <0.3 kcal/mol
- fixed node error: in total energy ~ 9.5 per atom (Be...F)

 \Rightarrow hoping for cancellation...

Conclusions

- STO wavefunctions in CASINO and ADF import filter implemented and tested for atoms and G2 molecules
- e-n cusp condition exactly satisfied by linear constraint
- constraint can be safely applied to existing wave functions
 if basis set is large enough
- performance of STO in QMC comparable to Gaussians (same basis size)
- STO basis sets smaller for same precision (\sim factor 1/2)
- basis set limit reached with pVQZ basis set for atomic calculations using DMC-SJ
- G2 energies reproduced with same precision as previous attempt based on Gaussian orbitals

Norbert Nemec

• G2 energies not quite as good as pseudopotential-based QMC

