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Motivation

Why forces in Diffusion Monte Carlo?

e Equilibrium geometries
e Energy derivatives are very useful!
e Molecular dynamics

Two main problems of forces in DMC are

e Infinite variance of force estimator
(addressed e.g. with pseudopotentials)’

e Discontinuous 1st (higher) derivative
in DMC wavefunction at nodal surface
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Basics of DMC

e Project out ground state
@) =¥ (r=0))for 7>, =it
using stochastic algorithm

e @is DMC wavefunction represented
by ensemble of walkers

* Use fixed node approx. to eliminate
fermionic sign problem
e Y. is a given trial wavefunction

I' is nodal surface defined by ¥ =0
Simulate nodal pockets individually

Diffusion Monte Carlo

Electron coordinate [arb. units]



Diffusion Monte Carlo

Basics of DMC

e Project out ground state
@) =e"| ¥ (r=0))for 7>, =it
using stochastic algorithm

e @is DMC wavefunction represented
by ensemble of walkers

* Use fixed node approx. to eliminate
fermionic sign problem

e Y. is a given trial wavefunction

I" is nodal surface defined b
Simulate nodal po '

@ has discontinuous derivatives at I
Define @, so it has no discontinuities

Electron coordinate [arb. units]
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Energy in DMC
Effective Hamiltonian in DMC

After an involved derivation, we obtain

. . 2
Ao = o(v. Ao Ak<a

j%‘lcpdv
5o = jsvcbdv
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cont. cont .
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for mixed DMC (¥=¥;) and pure DMC (#=9).
The & function term (discontinuity in @) does not contribute to E,.
But it may contribute when calculating derivatives of E.......



Forces in DMC

Differentiate E, wrt nucleus coordinate A

- do d¥
T—@dv Y\H-E,|—dV H-E, @dV
dE, _ J . J A-E,) a1 . 7 -E
di jsvcbdv [rodv [rodv
=Y, use Reynolds’ approx.! identify as nodal term
N(mixed)
Y=

nodal term2: N(pure)

1P. Reynolds, et al. Internat. J. Quant. Chem. 29 589 (1986)
2F. Schautz and H.-J. Flad, J. Chem. Phys. 112, 4421 (2000)
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Nodal Term N
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Volume integrals equal nodal term (steps omitted)
- VP | 1 d¥
J‘dSUT(H—ED)@dV I.—TT@l a T dS

N(mixed) == d4 _ 1 Y. ¥, dA
IY/T@dV 2 jSVTCDdV
N(pure) = Volume Terms =_— T Y
2 jrcbcpdv

1. these are exact expressions!

2. the averaged quantity only depends on ¥#;
3. the averaged quantities are same in mixed and pure DMC

Using the extrapolation formula

Q. o~2Q), e Q i _|IVH 1 dA
< >pure < >m/xed < >VMC W|th Q ij TT dﬂ

and (Q,,.=0 (proof omitted)

we find N (pure) = 2 N (mixed)



mixed DMC

pure DMC

Summary
dE, jsv M pav  [# Li ddZT;(H—ED)S"T}dV
T T
da yp@dv ’ [ odv
| (4 - \d%
w0 (H-E,) TdV
o 6 ST
T

j@d}dv I‘P(D (H E)

977 qv
di

d

jgbqbdv i jsvcbdv
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Computational Detalls

GeH: e no electron-electron interaction (nodal terms from kinetic energy!)
e trial wavefunction: single determinant with 4 basis sets
¢ local pseudopotentials (to avoid infinite variance!)
GeH,SiH,SiH,:
o full electron-electron interaction
e trial wavefunction: single determinant x Correlation function

e nonlocal pseudopotentials’

¥

e calculate oty rather than aty
oA dA

e use future walking method to calculate pure estimates

e for reference also calculate energy gradient from potential energy curves

' A. Badinski, R.J. Needs PRE 76 036707 (2007)



Total forces in a.u.

How to get geometries? (e.g. si)
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Bond length in a.u.

GeH (no e-e interaction) TV
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Difference between force & exact energy gradient (within basis set)

Forces on Ge
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Quality
of ¥

Bond length in a.u.

Forces on H

0.03

0.01 ~

-0.01 -

-0.03 -

-0.05 -

-0.07 -

Quality
of ¥

O F(tot,mixed DMC)
B F(HFT,pure DMC)
O F(HFT,pure DMC)+N

e F(tot,mixed DMC) is slightly better than F(HFT,pure DMC)
e Adding nodal term N to F(HFT,pure DMC) improves forces significantly
o F(tot,pure DMC) always better than F(tot,mixed DMC)

Nodal terms may be significant, should be included!



Bond length in a.u.
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GeH,SiH,SiH, (with e-e interactionICME

Difference between forces & exact energy gradient

Forces on Ge or Si Forces on H
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u F(HFT pure DMC) S B F(HFT,pure DMC)
0.02 - 0O F(HFT,pure DMC)+N g 0.02 O F(HFT pure DMC)+N
e
0.01 |—X—‘ ©0.01
[
©
0.00 - -+ 5 0.00 ~ ”"‘if T
0.01 GeH SiH 2001 | GeH GeH SiH SiH,
' (poor (good (good (poor (good (good (good
basis) basis) basis) basis) basis) basis) basis)

For poor basis:
e F(HFT,pure DMC) worse than F(tot,mixed DMC)
e Adding nodal term N to F(HFT,pure DMC) significantly improves forces

For good basis:
e F(HFT,pure DMC) equal or better than F(tot,mixed DMC)
e Adding nodal term N to F(HFT,pure DMC) has no significant effect

Nodal terms seem less important if basis set is good!



Conclusions

We derived exact expressions for forces within mixed and pure DMC

The nodal term in mixed DMC can be calculated straightforwardly
In pure DMC, it may be approximated as twice the mixed nodal term

Tests for small molecules indicate that nodal terms may be significant
and including them can significantly improve forces!

Pure DMC forces including nodal terms seem more accurate than mixed
DMC forces
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