

Pulay Nodal Terms in Accurate Diffusion Monte Carlo Forces

Alexander Badinski¹, Peter Haynes^{1,2,} Richard Needs¹
¹University of Cambridge, ²Imperial College London

ESDG, January 2008

Why forces in Diffusion Monte Carlo?

- Equilibrium geometries
- Energy derivatives are very useful!
- Molecular dynamics

Two main problems of forces in DMC are

- Infinite variance of force estimator (addressed e.g. with pseudopotentials)¹
- Discontinuous 1st (higher) derivative in DMC wavefunction at nodal surface

Diffusion Monte Carlo

Basics of DMC

- Project out ground state
 - $|\Phi\rangle = e^{-\tau \hat{H}} |\Psi_{\tau}(\tau = 0)\rangle$ for $\tau \to \infty$, $\tau = it$ using stochastic algorithm
- Use fixed node approx. to eliminate fermionic sign problem
- Ψ_{T} is a given trial wavefunction Γ is nodal surface defined by Ψ_{T} = 0 Simulate nodal pockets individually

Electron coordinate [arb. units]

Diffusion Monte Carlo

Basics of DMC

• Project out ground state

$$|\Phi\rangle = e^{-\tau \hat{H}} |\Psi_{\tau}(\tau = 0)\rangle$$
 for $\tau \to \infty$, $\tau = it$ using stochastic algorithm

- Use fixed node approx. to eliminate fermionic sign problem
- Ψ_T is a given trial wavefunction Γ is nodal surface defined by $\Psi_T = 0$ Simulate nodal pockets individually

Problem

 Φ has discontinuous derivatives at Γ Define $\Phi_{\rm cont.}$ so it has no discontinuities

Electron coordinate [arb. units]

Energy in DMC

Effective Hamiltonian in DMC

After an involved derivation, we obtain

$$\hat{H}\Phi = \Theta(\Psi_T)\hat{H}\Phi_{cont.} - \frac{1}{2}\delta(\Psi_T)\frac{|\nabla \Psi_T|^2}{\Psi_T}\Phi_{cont.}$$

DMC energy

$$E_D = \frac{\int \mathcal{Y} \hat{H} \Phi dV}{\int \mathcal{Y} \Phi dV}$$

for **mixed DMC** ($\mathcal{Y}=\mathcal{Y}_{\mathcal{T}}$) and **pure DMC** ($\mathcal{Y}=\mathcal{\Phi}$).

The δ function term (discontinuity in Φ) does not contribute to E_D . But it may contribute when calculating derivatives of E_D

Forces in DMC

Differentiate E_D wrt nucleus coordinate λ

$$\frac{dE_{D}}{d\lambda} = \frac{\int \Psi \frac{d\hat{H}}{d\lambda} \Phi dV}{\int \Psi \Phi dV} + \frac{\int \Psi (\hat{H} - E_{D}) \frac{d\Phi}{d\lambda} dV}{\int \Psi \Phi dV} + \frac{\int \frac{d\Psi}{d\lambda} (\hat{H} - E_{D}) \Phi dV}{\int \Psi \Phi dV}$$

$$\Psi = \Psi_T$$
 Hellmann-
Feynman force

use Reynolds' approx.¹

$$\frac{1}{\Phi} \frac{d\Phi}{d\lambda} \approx \frac{1}{\Psi_{T}} \frac{d\Psi_{T}}{d\lambda}$$

$$\Psi = \Phi$$
 Hellmann-
Feynman force:

nodal term²: N(pure)

F(HFT,pure DMC)

¹P. Reynolds, et al. Internat. J. Quant. Chem. **29** 589 (1986)

² F. Schautz and H.-J. Flad, J. Chem. Phys. **112**, 4421 (2000)

Nodal Term N

Volume integrals equal nodal term (steps omitted)

$$N(\text{mixed}) = \frac{\int \frac{d\Psi_{T}}{d\lambda} (\hat{H} - E_{D}) \Phi dV}{\int \Psi_{T} \Phi dV} = -\frac{1}{2} \frac{\int_{\Gamma} \Psi_{T} \Phi \frac{|\nabla \Psi_{T}|}{\Psi_{T}} \frac{1}{\Psi_{T}} \frac{d\Psi_{T}}{d\lambda} dS}{\int \Psi_{T} \Phi dV}$$

N(pure) = Volume Terms =
$$-\frac{1}{2} \frac{\int_{\Gamma} \Phi \Phi \frac{|\nabla \Psi_{T}|}{\Psi_{T}} \frac{1}{\Psi_{T}} \frac{d\Psi_{T}}{d\lambda} dS}{\int_{\Gamma} \Phi \Phi dV}$$

- 1. these are exact expressions!
- 2. the averaged quantity only depends on Ψ_T
- 3. the averaged quantities are same in mixed and pure DMC

Using the extrapolation formula

$$\langle \mathbf{Q} \rangle_{pure} \approx 2 \langle \mathbf{Q} \rangle_{mixed} - \langle \mathbf{Q} \rangle_{VMC}$$
 with $\mathbf{Q} = \frac{|\nabla \mathcal{\Psi}_{\mathcal{T}}|}{\mathcal{\Psi}_{\mathcal{T}}} \frac{1}{\mathcal{\Psi}_{\mathcal{T}}} \frac{d \mathcal{\Psi}_{\mathcal{T}}}{d\lambda}$ and $\langle \mathbf{Q} \rangle_{VMC} = 0$ (proof omitted)

we find N (pure) \approx 2 N (mixed)

Summary

mixed DMC
$$\frac{dE_{D}}{d\lambda} = \frac{\int \Psi_{T} \frac{d\hat{H}}{d\lambda} \Phi dV}{\int \Psi_{T} \Phi dV} + \frac{\int \Psi_{T} \Phi \left[\frac{1}{\Psi_{T}} \frac{d\Psi_{T}}{d\lambda} \frac{1}{\Psi_{T}} (\hat{H} - E_{D}) \Psi_{T} \right] dV}{\int \Psi_{T} \Phi dV} + \frac{\int \Psi_{T} \Phi dV}{\int \Psi_$$

pure DMC
$$\frac{dE_D}{d\lambda} = \frac{\int \Phi \frac{d\hat{H}}{d\lambda} \Phi dV}{\int \Phi \Phi dV} + 2 \frac{\int \Psi_T \Phi \frac{1}{\Psi_T} (\hat{H} - E_D) \frac{d\Psi_T}{d\lambda} dV}{\int \Psi_T \Phi dV} + O(\Delta \Psi_T^2)$$

Computational Details

GeH:

- no electron-electron interaction (nodal terms from kinetic energy!)
- trial wavefunction: single determinant with 4 basis sets
- local pseudopotentials (to avoid infinite variance!)

GeH,SiH,SiH₄:

- full electron-electron interaction
- trial wavefunction: **single determinant** x Correlation function
- nonlocal pseudopotentials¹
- calculate $\frac{\partial \Psi_T}{\partial \lambda}$ rather than $\frac{d \Psi_T}{d \lambda}$
- use future walking method to calculate pure estimates
- for reference also calculate energy gradient from potential energy curves

¹ A. Badinski, R.J. Needs PRE **76** 036707 (2007)

How to get geometries? (e.g. SiH) 1CM

Internuclear Si-H distance in Angstrom

GeH (no e-e interaction)

Difference between force & exact energy gradient (within basis set)

- F(tot,mixed DMC) is slightly better than F(HFT,pure DMC)
- Adding nodal term N to F(HFT,pure DMC) improves forces significantly
- F(tot,pure DMC) always better than F(tot,mixed DMC)

Nodal terms may be significant, should be included!

GeH,SiH,SiH₄ (with e-e interaction) ICM

Difference between forces & exact energy gradient

For poor basis:

- F(HFT,pure DMC) worse than F(tot,mixed DMC)
- Adding nodal term N to F(HFT,pure DMC) significantly improves forces

For good basis:

- F(HFT,pure DMC) equal or better than F(tot,mixed DMC)
- Adding nodal term N to F(HFT,pure DMC) has no significant effect

Nodal terms seem less important if basis set is good!

Conclusions

- We derived exact expressions for forces within mixed and pure DMC
- The nodal term in mixed DMC can be calculated straightforwardly
 In pure DMC, it may be approximated as twice the mixed nodal term
- Tests for small molecules indicate that nodal terms may be significant and including them can significantly improve forces!
- Pure DMC forces including nodal terms seem more accurate than mixed DMC forces

Thanks to

John Trail (!), Neil Drummand, Pablo López Ríos, Matt Brown, Andrew Morris and Zoltan Radnai

EPSRC for funding