
Metadata extractor
interoperability for

materials science and chemistry
Matthew Evans

(UCLouvain & Matgenix)

MaRDA Annual Meeting
February 23 2023

marda-alliance/metadata_extractors

https://github.com/marda-alliance/metadata_extractors

Introductions

Co-leads:

● Matthew Evans (UCLouvain & Matgenix)
● Peter Kraus (TU Berlin)
● David Elbert (Johns Hopkins U. & MaRDA)

The working group:

● 30 or so people spanning many projects/consortia in research data
management, materials informatics, software engineering

● Assembled from conversations in 2022 at RDA, MADICES & MaRDA meeting

Scientific
Extract-Transform-Load

(ETL)

● Extracting data from
instrument files,
user-provided files, raw arrays
and streams

● Transforming data into a
tractable format for
analysis/storage, e.g., Python
objects, HDF5, NeXuS, JSON,
XML

● Loading data into a queryable
store, e.g., a database, archive

Motivation: User stories

● Scientist deposits raw data in archive, alongside a metadata file
describing how the files could be parsed, and what the output would look
like (enabling indexing/searching over the domain data)

● ELN/data management software developer wants to support a new file
type: either has to write or use existing parser (with potentially complex
dependencies and unclear outputs)

● Communities/Ecosystems can be fostered around parser code to improve
quality and define more rigorous data models/transformations, thus
reducing duplication of efforts.

Goals

I. Enable infrastructure, archives or ELN developers
robustly parse file types

II. Improve the quality and discoverability of parsers
in the community with schemas and semantics

III. Indexing over relevant domain-specific data and
metadata rather than using generic archives

Approach

I. A lightweight metadata schema for extractors

II. A common API specification for executing
extractor code

III. A searchable registry of extractors and file
types

SCHEMA API

REGISTRY

Schema defines a
format, can define
mappings between
“emergent” formats

“Semi-centralized”
conda-forge style
recipes with tests

and auditing
Machine-actionable
execution: find
parser -> run it

Ability to
search/index over

schemas and point to
persistent (to some

degree) URL

Reliable execution
and integrity

Programmatic schemas
and validation

A lightweight metadata schema for extractors
https://linkml.io/

Open questions

● Linking to other standards

● Online discussions around suitability of
traditional schema languages for scientific
data, data/metadata distinction and
planning of output schema format (see later)

 marda-alliance/metadata_extractors_schema

● Have authored two schemas with LinkML:
FileType and Extractor

● Currently only defined schemas that would
be used in the registry, can then extend to
the schemas that describe the outputs of
extractors

● Minimal description of inputs:

○ Instrument, vendor or software metadata, e.g.,
Bruker files produced by spectrometer xyz

○ Compatible versions
○ Human-readable caveats
○ Defined by examples where difficult
○ Incrementally adoptable

● Description of output “format”:

○ JSONSchema, RDF, JSON-LD, CSV-LD, LinkML
○ Always serialized via a second format?
○ c.f., WG on data dictionaries
○ Agnostic to any well-described format

https://linkml.io/
https://github.com/marda-alliance/metadata_extractors_schema/
https://linkml.io/

A common API specification for executing parser code

● Unified user-facing interface for I/O through
the parsers, e.g., (taking a CLI as an example)

● Well-defined entry point for invocation
● Accessible metadata (schemas, caveats etc.

from WP1)
● Optional validation
● Packaging for external use:

○ multilingual, containerized, WASM?

● Still at scoping stage, lots of good
discussion on GH.

● Informal agreement to leave this until the
registry and schemas are in place

● Design should be driven by existing case
studies and examples

● Balance between being too generic to be
useful vs too specific

○ Where do we stop? Parsing is just a step in a
workflow, could the same approach scale to an ML
model which “parses” data and returns well defined
outputs? Interacting APIs of autonomous labs?

 marda-alliance/metadata_extractors_api

https://github.com/marda-alliance/metadata_extractors_schema/

A searchable registry of parsers

● Registry is live, using the live schemas from WP1!

● Submission currently via manual pull requests: can
already add new file types that get validated in the
CI

● Need to automate extractor registry process,
possibilities:

○ Manually create yaml file for your code and
make PRs to registry keep it up to date

○ Provide .marda.yml file in your code repo and
get it scraped (say, once a week)

○ Write a web UI/form that generates the YAML
to submit to the repo

Open questions

● Social mechanism for populating, curating
and maintaining the registry

● User-facing tools built on top of registry: file
type detection, copy-paste parsing

● Representing coupled collections of file
types, e.g., Bruker TopSpin folder, VASP
inputs/outputs (POSCAR, INCAR etc.)

 marda-alliance/metadata_extractors_registry

https://marda-registry.fly.dev/redoc

https://github.com/marda-alliance/metadata_extractors_schema/
https://marda-registry.fly.dev/redoc

Case study: yadg (Peter Kraus) dgbowl/yadg

Main features:
● Timestamps, Units, Uncertainties
● BioLogic files (mpr, mpt)
● Agilent files (dx, ch)

Current usage pattern:

● write a DataSchema → dataschema.yml

● yadg process dataschema.yml output.json

● output.json is a yadg-specific structured json
file…

Proposed MaRDA extractors usage pattern:

● yadg extract biologic.mpr *.mpr

● output: standardized FAIR format, probably
NeXus…

● target: Q1/2023

Interested?

● We are looking for:

○ Extractor libraries
○ Awkward file types
○ Vendors?
○ Schema/semantics experts
○ End users - library/infra developers and

scientists

● Monthly meetings:

○ March 21 at 15:00 UTC

● Fortnightly office hours arranged on:
○ Slack (#automated-extractors)
○ GitHub Discussions

marda@ml-evs.science

