Some Correlation Problems – and One Partial Solution

A partially solved problem
 He scattering from MgO(100)

An interesting problem
 Polyacetylene (again)

The ultimate problem (unsolved, obviously)
 Magnetocaloric cooling of systems like (Ca,La)MnO$_3$
1. He Scattering From MgO(100)
A Well Defined Problem (for an oxide surface)
The Experiment

1. Elastic Diffraction
2. Inelastic energy loss
3. Resonance in traps
4. Trapping
The Problem – Compute the Potential

Weak interaction – London dispersion at long range
Methodology

CRYSTAL14 – local Gaussian orbitals

Truncated summation of analytic integrals on the periodic lattice => exact exchange calculated efficiently

Hybrid exchange: B3LYP functional (20% Fock exchange) (Reliablity established now in some 100+ periodic systems)

Triple / Quadruple + polarisation valence basis sets

http://www.crystal.unito.it
Who did the hard work – CRYSTAL / CRYSCOR

A reliable and efficient code for periodic MP2 theory
Local functions describing the occupied manifold

Local functions describing the virtual manifold

Truncation of the occupied space: Wannier-Wannier pairs

Reduction of the virtual space: PAOs & W-W pair domains
Scaling with system size

Single processor AMD Opteron 2.2 GHz
MgO(100)-He

2x2 supercell (negligible lateral interactions)
5 layer slab + extrapolation to infinite slab
HF + LMP2 Binding

$D \sim 4 \text{ meV}$

Measured 7.5-12 meV
FIG. 4: Comparison of the CC intensities for case 1 (red stars) and case 2 (blue circles) with the experimental spectra (black lines) and the peak areas (black squares). Diffraction peaks are given in counts/s; peak areas and CC intensities have been normalized in a way that the specular (central) peak appears at the maximum of the experimental peak. The considered incident energy are the following: (a) $E_i = 26.62$ meV, (b) $E_i = 33.30$ meV, (c) $E_i = 40.02$ meV, (d) $E_i = 48.96$ meV, (e) $E_i = 50.20$ meV and (f) $E_i = 60.47$ meV.
Pragmatic Approaches….. (Fiddling)

Scaling the MP2 contribution by comparison to CCSD(T) in model systems:

\[E = \text{HF} + 1.65 \times \text{MP2} \]

Close the single particle gap and the MP2 contribution increases suggesting:

\[E = \text{B3LYP} + \text{MP2(B3LYP)} \]

Both give similar energy surfaces with a deeper minimum…
Computed Binding Energy: He-MgO(100)

Well depth measured: 7.0 - 12.5 meV
MP2 [4 meV]
MP2(B3LYP) [6.7 meV]
Comparison with Measured He Scattering

Incident Energies (meV)

a. 26.62
b. 33.30
c. 40.02
d. 48.96
e. 50.20
f. 60.47
Bound States

<table>
<thead>
<tr>
<th></th>
<th>Exp.1 (meV)</th>
<th>Exp.2 (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>---</td>
<td>-10.2</td>
</tr>
<tr>
<td>E_1</td>
<td>-5.5</td>
<td>-5.3</td>
</tr>
<tr>
<td>E_2</td>
<td>-2.6</td>
<td>-2.4</td>
</tr>
<tr>
<td>E_3</td>
<td>-1.2</td>
<td>-0.9</td>
</tr>
<tr>
<td>E_4</td>
<td>-0.5</td>
<td>-0.6</td>
</tr>
<tr>
<td>E_5</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Approaching the Exact Energy Surface

Calculate the difference between the MP2 energy and the exact energy using a finite cluster

\[\sum_z \left(\Delta E^{CCSD(T)} - \Delta E^{LMP2} \right) \]

Systematically improve:

1. Theory: MP2 – CCSD – CCSD(T) – CCSDT(Q)
2. Basis Set: aug-cc-VDZ – VTZ – VQZ
3. Cluster size:
For $\text{Na}_2\text{Mg}_3\text{O}_4$ Cluster Scaled MP2 Energy
Approaching the Exact Answer (Lateral Average)

A deeper bound state in the potential… but error analysis suggests that 10.2eV is not present

Reasonable agreement with the diffraction intensities
A deeper bound state in the potential... but error analysis suggests that 10.2eV is not present

Reasonable agreement with the diffraction intensities
A powerful method for surface analysis if the potential is known.

It seems that it is possible to get close to the exact potential in a systematic way but only with some effort.
High quality data for LiF (etc), TiO$_2$

Solving for a structure requires a simple potential model.

1. Develop a pairwise O$^{2-}$-He interaction potential (none of the obvious functional forms fit well) and test transferability

2. A much faster method with \sim1meV accuracy
2. Polyacetylene
Peierls Distortion

B3LYP nospin - equal CC distances

B3LYP nospin dimerised
Energy Gap and Bond Length Alternation

<table>
<thead>
<tr>
<th>Method</th>
<th>a (Å)</th>
<th>C-C (Å)</th>
<th>BLA (Å)</th>
<th>χ_C</th>
<th>E_g (eV)</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>2.46</td>
<td>1.36, 1.44</td>
<td>0.08</td>
<td>-</td>
<td>1.4-1.9</td>
<td>-</td>
</tr>
<tr>
<td>B3LYP</td>
<td>2.467</td>
<td>1.363, 1.424</td>
<td>0.061</td>
<td>0.514</td>
<td>1.246</td>
<td>0.015</td>
</tr>
<tr>
<td>LDA</td>
<td>2.450</td>
<td>1.379, 1.391</td>
<td>0.012</td>
<td>0.503</td>
<td>0.102</td>
<td>0.000</td>
</tr>
<tr>
<td>HF</td>
<td>2.460</td>
<td>1.328, 1.455</td>
<td>0.126</td>
<td>0.529</td>
<td>7.270</td>
<td>0.146</td>
</tr>
</tbody>
</table>
Spin Polarisation – Symmetric Geometry

<table>
<thead>
<tr>
<th>spin moment $^{(\mu_B)}$</th>
<th>B3LYP</th>
<th>LDA</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S</td>
<td>_C$</td>
<td>0.22</td>
</tr>
<tr>
<td>$</td>
<td>S</td>
<td>_H$</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Spin Polarisation vs Dimerisation

B3LYP spin - equal CC distances

B3LYP nospin dimerised

Same energy (~0.3 meV) in B3LYP
Band gap after spin or spatial (or both) symmetry breaking always ~1eV
Acknowledgements

Rutherford Appleton Laboratory (UK)
Dr Barbara Montanari

Imperial College, London (UK)
Dr Ruth Martinez-Casado (now Univ. of Madrid)
Dr. Giuseppe Mallia

Turin University, Turin (Italy)
Dr. Lorenzo Mazchio
Dr. Silvia Casassa

Prof. Cesare Pisani

Regensburg University (Regensburg, Germany)
Prof. Martin Schuetz
Dr. Denis Usvyat