The (negative) sign problem in Full Configuration Interaction Quantum Monte Carlo and other short stories

James Spencer1,2 and Matthew Foulkes2

1Thomas Young Centre, Dept. of Materials, Imperial College London

2Condensed Matter Theory, Dept. of Physics, Imperial College London

July 30, 2012
HANDE-QMC code

Highly Accurate N-Determinant Quantum Monte Carlo

- Systems:
 - Hubbard model (local and Bloch orbitals)
 - Uniform electron gas
 - Heisenberg model
 - Molecular systems via precomputed integrals

- Methods:
 - Full Configuration Interaction
 - Full Configuration Interaction Quantum Monte Carlo
 - Coupled Cluster Monte Carlo
 - Initiator approximation
 - Folded spectrum FCIQMC
 - Density Matrix Quantum Monte Carlo

- Much more to come...

Available to collaborators. Open-source release in the next year-ish.
Acknowledgements

- UROP students (funding: EPSRC via CDT on Theory and Simulation of Materials)
 - Joe Weston (Imperial)
 - Nick Blunt (Imperial)
 - Will Handley (Cambridge)
- MSci students
 - Nick Blunt
 - Tom Rogers
- Alex Thom
- Richard Needs
Essentially exploit the power method for finding the eigenstate, \(c_0 \) with the largest absolute eigenvalue of a matrix, \(M \):

1. Take a starting vector, \(n(t = 0) \) with a non-zero overlap with \(c_0 \); \(n(0) = \sum_i x_i c_i \).
2. Let \(n_i(t + \Delta \tau) = n_i(t) + \sum_j M_{ij} n_j(t) \Delta \tau \).
3. Contribution from eigenstate \(c_i \) decays as \(((1 + \Delta \tau \lambda_i)/(1 + \Delta \tau \lambda_0))^t/\Delta \tau \).
4. \(n(t \to \infty) \propto c_0 \).

\(\rightarrow \) Can easily be performed stochastically by sampling the action of \(M \) on \(n^1 \).

Win if memory demands are less than two vectors the size of the Hilbert space!

\[^1\text{G.H. Booth, A.J.W. Thom and Ali Alavi, JCP 131, 054106 (2009)}\]
Imaginary-time Schrödinger equation

\[n(\tau = k\Delta\tau) = (I - H\Delta\tau)^k n(0) \] \hspace{1cm} (1)

is a first-order approximation to

\[n(\tau) = e^{-H\tau} n(0) \] \hspace{1cm} (2)

which is the solution to the imaginary-time Schrödinger equation:

\[\frac{d n_i}{d\tau} = - \sum_j H_{ij} n_j. \] \hspace{1cm} (3)

FCIQMC appears to be particularly efficient for (some) quantum systems.
FCIQMC algorithm

for each occupied site i

for each psip, sign s_i, on i

energy contribution: $\frac{H_{i0} - S\delta_{i0}}{n_0} s_i$

annihilate parent and child psips

select a random site, j

spawn new psip on j with probability

$$\frac{|H_{ij} - S\delta_{ij}| \Delta \tau}{p(j|i)},$$

$$-\text{sign} \left((H_{ij} - S\delta_{ij}) s_i \right)$$
Example: CN

UHF single-particle basis; cc-pVDZ; CAS (9,12); 98476 determinants.
FCIQMC: successes and failures

✓ Exact (within finite basis results) for wide variety of atoms and molecules
✓ Benchmark results for ionisation and electron affinity energies
✓ Largest calculation done: $> \mathcal{O}(10^{15})$ [largest FCI: $\mathcal{O}(10^{10})$]
× Methane is ‘hard’!
× Hubbard model is a disaster...
Hubbard model plateau

\[\hat{H} = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} \hat{c}_{\mathbf{r}, \sigma}^{\dagger} \hat{c}_{\mathbf{r}', \sigma} + U \sum_{\mathbf{r}} \hat{n}_{\mathbf{r}, \uparrow} \hat{n}_{\mathbf{r}, \downarrow} \]

(4)

\[\hat{H} = \sum_{\mathbf{k}, \sigma} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}, \sigma}^{\dagger} \hat{c}_{\mathbf{k}, \sigma} + \frac{U}{M} \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} \hat{c}_{\mathbf{k}_1, \uparrow}^{\dagger} \hat{c}_{\mathbf{k}_2, \downarrow}^{\dagger} \hat{c}_{\mathbf{k}_3, \downarrow} \hat{c}_{\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3, \uparrow} \]

(5)

18 site 2D Hubbard model at \(\mathbf{k} = (0, 0) \):
Annihilation is crucial
FCIQMC without annihilation

(Let $T = -(H - SI) = T^+ - T^-$.)

Separate, but coupled, populations of positive and negative psips2:

\[
\frac{dn_i^+}{d\tau} = \sum_j \left(T_{ij}^+ n_j^+ + T_{ij}^- n_j^- \right),
\]

\[
\frac{dn_i^-}{d\tau} = \sum_j \left(T_{ij}^+ n_j^- + T_{ij}^- n_j^+ \right).
\]

(6)

Can combine in-phase and out-of-phase:

\[
\frac{d(n_i^+ + n_i^-)}{d\tau} = \sum_j \left(T_{ij}^+ + T_{ij}^- \right) \left(n_j^+ + n_j^- \right),
\]

\[
\frac{d(n_i^+ - n_i^-)}{d\tau} = \sum_j \left(T_{ij}^+ - T_{ij}^- \right) \left(n_j^+ - n_j^- \right).
\]

(7)

2 JSS, N.S. Blunt, WMCF, JCP 136 054110 (2012)
Convergence to $H^+ + H^-$
Effect of annihilation

\[
\frac{dn_i^+}{d\tau} = \sum_j \left(T_{ij}^+ n_j^+ + T_{ij}^- n_j^- \right)
\]

\[
\frac{dn_i^-}{d\tau} = \sum_j \left(T_{ij}^+ n_j^- + T_{ij}^- n_j^+ \right)
\]

(8)
Effect of annihilation

\[
\frac{dn_i^+}{d\tau} = \sum_j \left(T_{ij}^+ n_j^+ + T_{ij}^- n_j^- \right) - 2\kappa n_i^+ n_i^- \\
\frac{dn_i^-}{d\tau} = \sum_j \left(T_{ij}^+ n_j^- + T_{ij}^- n_j^+ \right) - 2\kappa n_i^+ n_i^-
\]

(8)

Destabilises in-phase state \(n^+ + n^- \).
Leaves true solution, \(n^+ - n^- \), unchanged.
Sign-problem-free systems

If $T^+ + T^-$ and $T^+ - T^-$ are related by a unitary transform then:

- identical set of eigenvalues;
- identical growth rates;
- no annihilation events;
- no sign problem in FCIQMC \Rightarrow sample FCI ground state with arbitrary number of psips.

Sign-problem-free systems: 1D Hubbard model in a local orbital basis; Heisenberg bipartite lattices.

Example: 18-site, 18-electron 1D Hubbard model at $U = t$:

<table>
<thead>
<tr>
<th>basis</th>
<th>Hilbert space</th>
<th>plateau height</th>
<th># psips</th>
<th>energy (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloch</td>
<td>1.31×10^8</td>
<td>6.9×10^6</td>
<td>2.3×10^7</td>
<td>$-18.84248(8)$</td>
</tr>
<tr>
<td>local</td>
<td>2.36×10^9</td>
<td>n/a</td>
<td>2.8×10^5</td>
<td>$-18.8423(3)$</td>
</tr>
</tbody>
</table>
Population dynamics

\(\text{Let } p = n^+ + n^- \text{ and } n = n^+ - n^- \).

\[
\begin{align*}
\frac{dp_i}{d \tau} &= \sum_j \left(T_{ij}^+ + T_{ij}^- \right) p_j - \kappa (p_i^2 - n_i^2) \\
\frac{dn_i}{d \tau} &= \sum_j \left(T_{ij}^+ - T_{ij}^- \right) n_j.
\end{align*}
\] (9)

As \(\tau \to \infty \), \(n(\tau) \) tends to ground-state wavefunction, \(n_0 \):

\[
\frac{dp_i}{d \tau} \approx \sum_j \left(T_{ij}^+ + T_{ij}^- \right) p_j - \kappa p_i^2 + \kappa \alpha^2 e^{2T_{\max} \tau} n_0^2. \] (10)

\(\Rightarrow \) Initial exponential growth followed by a plateau followed by a second (slower) exponential growth.
One-component analogue

\[
\frac{dp_i}{d\tau} \approx \sum_j \left(T_{ij}^+ + T_{ij}^- \right) p_j - \kappa p_i^2 + \kappa \alpha^2 e^{2T_{\text{max}} \tau} n_{0i}^2.
\] \hspace{1cm} (11)

One-component analogue of population ODE:

\[
\frac{dp}{d\tau} = V_{\text{max}} p - \kappa p^2 + \kappa \left(n_0 e^{T_{\text{max}} \tau} \right)^2.
\] \hspace{1cm} (12)
One-component analogue

One-component analogue of population ODE:

\[
\frac{dp}{d\tau} = V_{\text{max}}p - \kappa p^2 + \kappa \left(n_0 e^{T_{\text{max}} \tau}\right)^2.
\] (11)

Riccati differential equations can be solved:

\[
p(\tau) = \frac{1}{\kappa u} \frac{du}{d\tau},
\] (12)

\[
u(\tau) = c_1 \cdot {}_0F_1 \left(; 1 - \frac{V_{\text{max}}}{2T_{\text{max}}}; z \right)
+ c_2 z^{V_{\text{max}}/2T_{\text{max}}} \cdot {}_0F_1 \left(; 1 + \frac{V_{\text{max}}}{2T_{\text{max}}}; z \right),
\] (13)

\[
z = \frac{\kappa^2 n_0^2 e^{2T_{\text{max}} \tau}}{4T_{\text{max}}^2}.
\] (14)
Model population dynamics

\[\frac{p(\tau)}{n_0} \]

\[V_{\text{max}}/\kappa n_0 = 25.0; \quad V_{\text{max}}/T_{\text{max}} = 30.0 \]

\[V_{\text{max}}/\kappa n_0 = 12.5; \quad V_{\text{max}}/T_{\text{max}} = 15.0 \]

\[V_{\text{max}}/\kappa n_0 = 12.5; \quad V_{\text{max}}/T_{\text{max}} = 30.0 \]
Hubbard model: plateau height $\propto U/t$

Kinetic contributions ($\propto t$) to the Hamiltonian matrix are diagonal in the Bloch basis.

\[
\frac{dp_i}{d\tau} = \sum_j \left(T_{ij}^+ + T_{ij}^- \right) p_j - \kappa p_i^2 + \kappa \alpha^2 e^{2T_{\text{max}}\tau} n_{0i}^2 \quad (15)
\]

\[
\downarrow
\]

\[
U^2 \sum_{ij} \left(T_{ij}^{+\prime} + T_{ij}^{-\prime} \right) p_j' \approx \kappa U^2 \sum_i p_i'^2. \quad (16)
\]

Total population psip population at the plateau:

\[
\sum_i p_i = U \sum_i p_i' \quad (17)
\]
Propagator \((I - H \Delta \tau)\) only gives access to the maximal eigenstate of \(H\).

Use folded spectrum method:

\[
M = (H - \varepsilon I) \tag{18}
\]

and solve for \(M^2\):

\[
n_i(\tau + \Delta \tau) = n_i(\tau) + \sum_j \sum_k (M_{ij} M_{jk} - S \delta_{ij} \delta_{jk}) \Delta \tau n_k(\tau) \tag{19}
\]

Sample action of \((H - \varepsilon I)^2 - SI\) rather than action of \(H - SI\).
Excitation generation

\[
\begin{align*}
\frac{(M_{ii}M_{ii} - S) \Delta \tau}{p(\circlearrowleft)} & \quad \frac{M_{jj}M_{ji} \Delta \tau}{p(\rightleftharpoons)p(i|j)} & \quad \frac{M_{ji}M_{ii} \Delta \tau}{p(\rightleftharpoons)p(i|j)} \\
\frac{M_{jk}M_{ki} \Delta \tau}{p(\左上rightarrow \rightleftharpoons \leftdownarrow \rightarrow)} & \quad & \\
\end{align*}
\]
Preliminary results: 3×3 Hubbard model, $U = t$, 8 electrons
Conclusions

▶ Negative sign problem in FCIQMC is due to instability to a non-physical state.
▶ Annihilation ensures convergence to the true ground state of the Hamiltonian.
▶ Characteristic population dynamics is due to the interplay between the instability, annihilation and the true ground state.
▶ Severity of the sign problem is dependent upon the underlying basis.
▶ Excited states accessible via the folded spectrum approach.
Bonus slides
Heisenberg spin model (Nick Blunt)

\[\hat{H} = J \sum_{<ij>} \hat{S}_i \cdot \hat{S}_j \quad (20) \]

5 × 5 anti-ferromagnetic \((J > 0)\) triangular lattice with periodic boundary conditions.
Time-step error (in limit $S \to E_0$)

Exact propagator $e^{-(H-SI)\Delta \tau}$: $\lambda_0 = 1$.

Approximate propagator $I - (H - SI)\Delta \tau$:

$\lambda_{\text{max}} = 1 - (E_0 - S)\Delta \tau = 1$ or

$\lambda_{\text{max}} = 1 - (E_{\text{max}} - S)\Delta \tau = 1 - (E_{\text{max}} - E_0)\Delta \tau$.

Disaster occurs if

$$\Delta \tau > \frac{2}{E_{\text{max}} - E_0}$$ (21)
Time step and the sign problem

Hamiltonian matrices are (often) diagonally dominant.

Sign problem is actually not so bad if a psip cannot create more than one psip of the opposite sign on its own basis function.

Example: uniform electron gas $r_s = 1.0$, $n = 4^3$.

<table>
<thead>
<tr>
<th>M_{ij}</th>
<th>Lowest eigenvalue (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle D_i</td>
<td>\hat{H}</td>
</tr>
<tr>
<td>$-</td>
<td>\langle D_i</td>
</tr>
<tr>
<td>$-</td>
<td>\langle D_i</td>
</tr>
</tbody>
</table>

\[3\text{http://github.com/jsspencer/toy_fci}\]
Convergence to the ground state

\[
\frac{dp_i}{d\tau} = \sum_j \left(T_{ij}^+ + T_{ij}^- \right) p_j - \kappa(p_i^2 - n_i^2) \tag{22}
\]

After the plateau the shift is adjusted to the ground state energy:

\[
0 = \frac{dp_i}{d\tau} \approx \sum_j \kappa(n_i^2 - p_i^2) \tag{23}
\]

⇒ basis functions occupied by positive or negative psips.

\textbf{n}: stochastic representation of the ground-state wavefunction

\textbf{\textit{n}}: psip population