Some Estimates in Variational Quantum Monte Carlo

J.R. Trail and R. Maezono

School of Information Science, JAIST,
Nomi, Ishikawa 923-1292, Japan

July 2009
• Variational Monte Carlo

• 'Standard' VMC is $P = \psi^2$, and failure of CLT is an artifact of this

• Conditions and expressions for Normally distributed estimates in general sampling

• **Efficient** sampling Monte Carlo implemented - not sampling from $P = \psi^2$

• Estimates for energies, excitation energies, ionisation energies, transition moments

• Results for first row atoms and some molecules
VMC and General Sampling

Sample with \(P = \psi^2/w \) and construct an estimate:

\[
\mu = \frac{\sum w_i E_L(R_i)}{\sum w_i}
\]

• If both variances exist, Fieller’s theorem tells us this is a sample from a Normal distribution with:

\[
\mu = \frac{\int \psi^2 E_L dR}{\int \psi^2 dR}, \quad \sigma^2 = \frac{1}{r} \frac{\int \psi^2/w dR \int w \psi^2 (E_L - \mu)^2 dR}{\left[\int \psi^2 dR \right]^2}
\]

• We can estimate the variance:

\[
\bar{\sigma}^2 = \frac{r}{r-1} \frac{\sum w_i^2 (E_L(R_i) - \bar{\mu})^2}{(\sum w_i)^2}
\]

• \(\bar{\sigma}^2 \neq \text{sample variance} / r \)

• These equations do not follow from the usual (univariate) Central Limit Theorem

• Zero Variance Principle is still valid - for exact \(\psi \Rightarrow \sigma = 0 \)

\(\rightarrow \) The error is controlled if the bivariate CLT is valid and \(\langle w \rangle \neq 0 \)

When is it Normal?

For standard sampling $P = \psi^2 (w = 1)$

- Normal for standard sampling and total energy ($P \propto 1/x^4$)
- Not Normal for standard sampling used with correlated sampling, forces, and many other estimates
- Different choices of P (equivalently w) are possible
- Changes computational cost: flops for evaluating P
- Changes distribution of random errors
- Failure of CLT from singularities in averaged quantities on the nodal surface

For some P (equivalently w) the variance is infinite, and CLT is invalid

\rightarrow Goal is to improve efficiency and reinstate the CLT where it is invalid for standard sampling
Why is Normality so important?

We want Normally distributed estimates, from a general form of the Central Limit Theorem.

If the distribution the estimates are drawn from is *not* normal then it is a Stable Law:

- Normal distribution and an example Stable law
- Probability that a sample fall outside of central interval size $2x$
- Width parameter is representative of error for Normal, not for Stable
- Width parameter is estimateable for Normal - sample standard error
- Width parameter is *not* estimateable for Stable - sample standard error is unrelated
Efficient sampling in VMC

- Draw position vectors from $P = |D_1|^2 + |D_2|^2$a, no Jastrow, Backflow

 \rightarrow Zero on coalescence planes only, non-zero on rest of nodal surface

- Perform Metropolis accept/reject with P, and use $w = \psi^2 / P$

- Using r samples, the Bivariate CLT, and Fiellers theorem provides the Normal estimate

\[
\bar{E}_{tot} = \frac{\sum w_i E_L(R_i)}{\sum w_i}, \quad \sigma^2 = \frac{r}{r-1} \frac{\sum w_i^2 (E_L(R_i) - \bar{E}_{tot})^2}{(\sum w_i)^2}
\]

- (wE_L, w) has no singularities and is bounded \Rightarrow all moments exist \Rightarrow distribution is Normal

aTrail JR and Maezono R, JCP (2010)
Efficient sampling in VMC

Optimisation and estimation of total energy:

- All-electron
- First row atoms + some diatomic molecules
- Numerical orbitals from ATSP2K and 2DHF (MCSCF and HF)
- Jastrow, Backflow, and $5 - 86$ CSFs
- 48 h desktop time/system
- r for Final estimate:monitor estimate:optimisation $r = 9000 : 150 : 1$
Efficient sampling in VMC

• Improved results for less computational effort
• For a given error $5 - 35 \times$ faster than standard sampling
• Surfaces for energy optimisation are Normal
• Do we need anisotropic Jastrow/Backflow?
Distribution of more general estimates

What is the distribution for more complex estimates?

Example: Energy differences

\[
\Delta E_{tot} = \frac{\int \psi_1^2 E_1 d\mathbf{R}}{\int \psi_1^2 d\mathbf{R}} - \frac{\int \psi_2^2 E_2 d\mathbf{R}}{\int \psi_2^2 d\mathbf{R}}
\]

- Sample with \(P = |D_1|^2 + |D_2|^2 \) (no nodal surface, only coalescence planes)

\[
\text{Est} [\Delta E_{tot}] = \frac{\sum w_1 E_1}{\sum w_1} - \frac{\sum w_2 E_2}{\sum w_2} = \frac{S_2}{S_1} - \frac{S_4}{S_3}
\]

- Elements in sums \(S_n \) are correlated only when in same ‘time slots’

\(\Rightarrow \) Multivariate CLT is true

\(\Rightarrow \) Each \(S_n \) is Normal

\(\Rightarrow \) Correlation between \(S_n \) and \(S_m \) is linear
Algebra for sums of random variables

What is the distribution of

$$\Delta E_{tot} = \frac{S_2 S_3 - S_1 S_4}{S_1 S_3}, \quad S_n = \sum_i X_n(i)$$

with parameters expressed in terms of the estimateable

$$E[X_n(i)] = \mu_n$$
$$Var[X_n(i)] = C_{nn}$$
$$Cov[X_m(i), X_n(j)] = C_{nm}\delta_{i,j}$$

?
Algebra for sums of random variables: Sums

Adding sums of the random variables, trivial to show that:

- Distribution is Normal

\[
\begin{align*}
\mathbb{E}[S_1 + S_2] & = r(\mu_1 + \mu_2) \\
Var[S_1 + S_2] & = r(C_{11} + 2C_{12} + C_{22}) \\
Cov[S_1 + S_2, S_3 + S_4] & = r(C_{13} + C_{14} + C_{23} + C_{24})
\end{align*}
\]

→ All the $S_1 + S_2$ are Normal

→ Correlation between any $S_j + S_k$ and $S_l + S_m$ is linear
Algebra for sums of random variables: Quotients

Quotients of sums of the random variables, Fieller's theorem provides:

- Distribution is Normal

\[\mathbb{E} \left[\frac{S_2}{S_1} \right] = \frac{\mu_2}{\mu_1} \]

\[\text{Var}\left[\frac{S_2}{S_1} \right] = \frac{1}{r \mu_1^2} \left(C_{22} - \frac{2 \mu_2}{\mu_1} C_{12} + \left(\frac{\mu_2}{\mu_1} \right)^2 C_{11} \right) \]

- No expression for correlation of different quotients

So,

\[\frac{S_1 + S_2}{S_3 + S_4} \]

is Normal and parameters are estimateable.
Algebra for sums of random variables: Products

Products of sums of the random variables:

• What is the bivariate distribution of \((S_1 S_2, S_3 S_4)\)?

• Derive co-moments and compare with bivariate Normal....define \(\Delta X_1(i) = X_1(i) - \mu_1\)

\[
\Delta(S_1S_2) = S_1.S_2 - E[S_1.S_2] = \sum_{ij} \Delta X_1(i) \Delta X_2(j) + r \sum_i [\mu_1 \Delta X_2(i) + \mu_2 \Delta X_1(i)] - rC_{12}
\]

• Co-moments are defined by \(\mu_{m,n} = E[\Delta(S_1S_2)^m . \Delta(S_3S_4)^n]\)

\[
\mu_{m,n} = E \left[\left(\sum_{ij} \Delta X_1(i) \Delta X_2(j) + r \sum_i [\mu_1 \Delta X_2(i) + \mu_2 \Delta X_1(i)] - rC_{12} \right)^m \times \left(\sum_{ij} \Delta X_3(i) \Delta X_4(j) + r \sum_i (\mu_3 \Delta X_4(i) + \mu_4 \Delta X_3(i)] - rC_{34} \right)^n \right]
\]

• Multiply out and count equivalent terms

• Pick out the dominant \(r\) terms.
Algebra for sums of random variables: Products

Powers of r in each term after multiplication:

- 2^{nd} order part: Powers p_1, q_1 from equivalence, none from prefactor
- 1^{st} order part: Powers p_2, q_2 from equivalence, p_2, q_2 from prefactor
- 0^{th} order part: Powers p_3, q_3 from equivalence, p_3, q_3 from prefactor
- Multiplication gives $p_1 + p_2 + p_3 = m, q_1 + q_2 + q_3 = n$
- Count powers of r from prefactors $[r]$, and from sums (r)

\Rightarrow Terms have powers of r:

$$[1]^{p_1} (r)^{p_1} [r]^{p_2} (r)^{p_2} [r]^{p_3} (1)^{p_3} . [1]^{q_1} (r)^{q_1} [r]^{q_2} (r)^{q_2} [r]^{q_3} (1)^{q_3} \mathbb{E} \ldots$$

But Expectations are zero if any index is unique:

$$\mathbb{E} [\Delta X_1(i) . \Delta X_2(j) . \Delta X_3(k) \ldots] = \mathbb{E} [\Delta X_1(i)] . \mathbb{E} [\Delta X_2(j) . \Delta X_3(k) \ldots] = 0$$

- Overcounting due to including zero expectations values
Algebra for sums of random variables: Products

Count only terms with no unique indices:

\[r^{(m+n)+(p_2+q_2)/2}\mathbb{E} \ldots \text{ for } (p_2 + q_2) \text{ even} \]

\[r^{(m+n)+(p_2+q_2+1)/2}\mathbb{E} \ldots \text{ for } (p_2 + q_2) \text{ odd} \]

⇒ In large \(r \) limit \(p_2 + q_2 = m + n \) terms dominate \((p_1 = p_3 = q_1 = q_3 = 0) \)

⇒ In large \(r \) limit the co-moments are same as those for sums:

\[
\mathbb{E}[\Delta(S_1S_2)^m.\Delta(S_3S_4)^n] = r^{m+n}\mathbb{E}\left[\left(\sum_i [\mu_1 \Delta X_2(i) + \mu_2 \Delta X_1(i)]\right)^m \times \left(\sum_i [\mu_3 \Delta X_4(i) + \mu_4 \Delta X_3(i)]\right)^n\right]
\]
Algebra for sums of random variables: Products

- In large r limit $(S_1 S_2, S_3 S_4)$ is bivariate Normal with

\[
\begin{align*}
\mathbb{E}[S_1 S_2] &= r^2 \mu_1 \mu_2 \\
Var[S_1 S_2] &= r^3 (\mu_1^2 C_{22} + 2 \mu_1 \mu_2 C_{12} + \mu_2^2 C_{11}) \\
Cov[S_1 S_2, S_3 S_4] &= r^3 (\mu_1 \mu_3 C_{24} + \mu_1 \mu_4 C_{23} + \mu_2 \mu_3 C_{14} + \mu_2 \mu_4 C_{13})
\end{align*}
\]

→ We have rules for obtaining the distribution of combinations of sums of random variables (that are Normal)
Energy differences

\[
\text{Est } [\Delta E_{\text{tot}}] = \frac{\sum w_1 E_1}{\sum w_1} - \frac{\sum w_2 E_2}{\sum w_2} = \frac{S_2 S_3 - S_1 S_4}{S_1 S_2}
\]

\[
\overline{\Delta E}_{\text{tot}} = \frac{\mu_2}{\mu_1} - \frac{\mu_4}{\mu_3}
\]

\[
\frac{r - 1}{r} \overline{\sigma}^2 = \frac{\sum w_1^2 (E_1 - \overline{\mu}_1)^2}{[\sum w_1]^2} - 2 \frac{\sum w_1 w_2 (E_1 - \overline{\mu}_1)(E_2 - \overline{\mu}_2)}{[\sum w_1][\sum w_2]} + \frac{\sum w_2^2 (E_2 - \overline{\mu}_2)^2}{[\sum w_2]^2}
\]

Sufficient conditions for this estimate to be Normal are

- All moments exist
- All means in the denominator are non-zero
- At least one mean in each product on numerator is non-zero
Carbon atom excitation energies

- Calculation as for GS (Multideterminant and numerical orbitals from MCSCF \(\sim 300 \) parameters)
- \(E_{tot} [2S+1 L] - E_{tot} [3 P] \)
- Lowest two eigenstates for each Term
- Inversion symmetry conserved by Jastrow and Backflow
- Term *approximately* conserved by introduction of Jastrow and Backflow
- Energy minimisation approximately valid for lowest two energies for each Term
- Sample with \(P = D_1 [2S+1 L]^2 + D_2 [2S+1 L]^2 + D_1 [3 P]^2 + D_2 [3 P]^2 \)
Carbon atom excitation energies

\[\Delta E \text{ (a.u.)} \]

\[\begin{array}{cccccccc}
3p^o & 1D^e & 1D^o & 1S^o & 5S^o & 1P^o & 1P^e & 3D^o & 3D^e & 3S^o & 3F^o & 1F^o & 5P^e \\
\end{array} \]

- Grey: experimental Spectroscopic values ± 'chemical accuracy'

- \(\text{C} \, ^{2S+1}L \rightarrow \text{C} \, ^3P \)
Carbon atom excitation energies

- $C^{2S+1}L \rightarrow C^{3P}$
- Grey: experimental Spectroscopic values \pm 'chemical accuracy'
- 48 energy difference estimates for each excitation
Error in Carbon atom excitation energies

- CI results used for allocating transitions to lines
- CI AS and orbitals chosen empirically to reproduce spectroscopy
Error in Carbon atom excitation energies

- Chemical accuracy from VMC + efficient sampling
- \textit{NOT} spectroscopic accuracy
- Estimate of difference \textit{not} difference of estimates
- Correlation reduces error by $10 - 70\%$
Ionization energies

- How do we deal with changes in electron number?

\[
E_{ion} = E_n - E_{n-1} = \frac{\int \psi_1^2 E_1 dR_n}{\int \psi_1^2 dR_n} - \frac{\int \psi_2^2 E_2 dR_{n-1}}{\int \psi_2^2 dR_{n-1}}
\]

- Sampled \(P_n(R_n) = D_1(n)^2 + D_2(n)^2 \)

- For estimating \(E_{n-1} \) ignore one 3d sample vector, so \(R_n \rightarrow R_{n-1} \)

- Distribution of \((w_2 E_2, w_2)\) given by integrating \(P_n \) analytically

\[
P_{n-1} = \int D_1(n)^2 + D_2(n)^2 d^3r_n
\]

\[
= \int \left[\phi_1(r_n) . C_1(1, n) + \phi_2(r_n) . C_1(2, n) + \ldots \right]^2 + \left[\phi_1(r_n) . C_2(1, n) + \phi_2(r_n) . C_2(2, n) + \ldots \right]^2 d^3r_n
\]

\[
= \left[C_1(1, n)^2 + C_1(2, n)^2 + \ldots \right] + \left[C_2(1, n)^2 + C_2(2, n)^2 + \ldots \right]
\]
Ionization energies

- Provides distributions of \((w_1 E_1, w_1, w_2 E_2, w_2)\) in terms of weights

\[
\begin{align*}
 w_1(R_n) &= \psi_1^2(R_n) / P_n(R_n) \\
 w_2(R_{n-1}) &= \psi_2^2(R_{n-1}) / P_{n-1}(R_{n-1})
\end{align*}
\]

- \(P_n\) is zero on coalescence planes only
- \(P_{n-1}\) is zero on coalescence planes only
- All sums are Normal and linearly correlated → Normal estimate
Ionization energies

- First row neutral atoms and ions
- Orbitals from same source as before
- Jastrow/Backflow and computational cost as before
- Optimise neutral atom and ion separately, with energy minimisation
- Estimate energy difference/error as for excitation energies
Ionization energies

- Experimental ionization energies
- VMC estimated energy difference
Error in Ionization energies

- Close but *not* chemical accuracy
- Maybe we need T/Q excitations?
- Correlation reduces error by 0 – 40%
Transition moments

Spectroscopic line widths characterised by transition dipole moments

\[\Delta \omega = \frac{3}{2} \Delta E \sum_m |\langle \psi_0 | \mathbf{R} | \psi_m \rangle|^2 \]

with sum over total angular momentum eigenstates.

Not done yet ... start with estimates for transition dipole moments:

\[t_{12} = |\langle \psi_1 | \sum_i \mathbf{r}_i | \psi_2 \rangle|^2 \]

- Sample using \(P = D_1(1)^2 + D_2(1)^2 + D_1(2)^2 + D_2(2)^2 \)
- Get an error estimate from random variable algebra
- Not zero variance...
Transition moments

Estimate:

\[t_{12} = \left| \langle \psi_1 | \sum r_i | \psi_2 \rangle \right|^2 \]

\[= \left[\int \psi_1 \psi_2 (x_1 + \ldots + x_n) d\mathbf{R} \right]^2 + \left[\int \psi_1 \psi_2 (y_1 + \ldots + y_n) d\mathbf{R} \right]^2 + \left[\int \psi_1 \psi_2 (z_1 + \ldots + z_n) d\mathbf{R} \right]^2 \]

\[\int \psi_1^2 d\mathbf{R} \int \psi_2^2 d\mathbf{R} \]

- Define weights \(w_1 = \psi_1^2 / P, w_2 = \psi_2^2 / P \)
- Analyse as before ...

\[\text{Est} [t_{12}] = \frac{S_1^2 + S_2^2 + S_3^2}{S_4 S_5} \]

- Normally distributed with estimateable mean and variance:

\[\bar{t}_{12} = \frac{\mu_1^2 + \mu_2^2 + \mu_3^2}{\mu_4 \mu_5} \]

\[r \mu_4^2 \mu_5^2 \text{Var}[\bar{t}_{12}] = \left[4 \mu_1^2 C_{11} + 4 \mu_2^2 C_{22} + 4 \mu_3^2 C_{33} + 8 \mu_1 \mu_2 C_{12} + 8 \mu_1 \mu_3 C_{13} + 8 \mu_2 \mu_3 C_{23} \right] \]

\[-2 \bar{t}_{12} \left[2 \mu_1 \mu_5 C_{14} + 2 \mu_2 \mu_5 C_{24} + 2 \mu_3 \mu_5 C_{34} + 2 \mu_1 \mu_4 C_{15} + 2 \mu_2 \mu_4 C_{25} + 2 \mu_3 \mu_4 C_{35} \right] \]

\[+ \bar{t}_{12}^2 \left[\mu_5^2 C_{44} + 2 \mu_4 \mu_5 C_{45} + \mu_4^2 C_{55} \right] \]

- Replace \(C \)’s and \(\mu \)’s with unbiased estimates
Many are non-normal and zero from symmetry considerations...
• ... so we drop them

• Random error $\sim 1\%$
Conclusions

• Normal errors can be reintroduced
• More computationally efficient than standard sampling
• Optimisation is on a Normal surface, unlike standard sampling
• Distribution of random error can be derived for general estimates and sampling

Normal and efficient estimates implemented for:
• Total energies
• Energy differences and Ionization energies
• Transition moments
Next?

- Spectroscopic line widths
- Electron affinities
- Optimise orthogonalised trial wavefunctions for more excited states
- Normal force estimates and geometry optimisation surfaces
- Generalised DMC