Trial wave functions

- How does backflow compare with other nodal improvement methods (orbital optimization, multideterminant expansion) for benzene energies?

Benzene dimers

- How does backflow change the binding energy of benzene dimer?
- For the geometries that we consider, what is the lowest energy benzene dimer geometry?
The Benzene Dimer

- Motivation: Prototypical system for weak $\pi-\pi$ interactions
- Problem: Computationally expensive methods and large basis sets needed to accurately describe weak van der Waals interactions
- Previous QMC and quantum chemical calculations give a range of energies and ground state geometries

Face to face T-shaped Parallel displaced
Previous calculations

Binding energies [kcal/mol]

<table>
<thead>
<tr>
<th>Method</th>
<th>Authors</th>
<th>Face to Face</th>
<th>Parallel Displaced</th>
<th>T-Shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>Park & Lee 2006</td>
<td>3.03</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsuzuki et al. 2002</td>
<td>1.48*</td>
<td>2.48</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>Sinnokrot et al. 2004</td>
<td>1.81</td>
<td>2.78**</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>Hobza et al. 1996</td>
<td></td>
<td>2.01</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>Jurecka et al. 2006</td>
<td>2.73</td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>SAPT</td>
<td>Podeszwa et al. 2006</td>
<td>2.42</td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>DMC</td>
<td>Sorella et al. 2007</td>
<td>0.5</td>
<td>2.2(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diedrich et al. 2005</td>
<td></td>
<td>3.6(4)</td>
<td>3.0(4)</td>
</tr>
<tr>
<td></td>
<td>Korth et al. 2008</td>
<td></td>
<td>1.7(4)</td>
<td>3.8(4)</td>
</tr>
<tr>
<td>Experiment</td>
<td>Grover et al. 1987</td>
<td></td>
<td></td>
<td>2.4(4)*</td>
</tr>
<tr>
<td></td>
<td>Krause et al. 1991</td>
<td></td>
<td></td>
<td>1.6(4)*</td>
</tr>
</tbody>
</table>

*Calculations report D_e experiments report D_0. Park & Lee calculate a zpe of -0.3 kcal/mol for the T-Shaped dimer, and -0.2 kcal/mol for the PD geometry.

** darker blue color indicates MP2 geometries
Previous calculations

Binding energies [kcal/mol]

<table>
<thead>
<tr>
<th>Method</th>
<th>Authors</th>
<th>Face to Face</th>
<th>Parallel Displaced</th>
<th>T-Shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>Park & Lee 2006</td>
<td>3.03</td>
<td></td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>Tsuzuki et al. 2002</td>
<td>1.48*</td>
<td>2.48</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>Sinnokrot et al. 2004</td>
<td>1.81</td>
<td>2.78**</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>Hobza et al. 1996</td>
<td></td>
<td>2.01</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>Jurecka et al. 2006</td>
<td></td>
<td>2.73</td>
<td>2.74</td>
</tr>
<tr>
<td>SAPT</td>
<td>Podeszwa et al. 2006</td>
<td>2.42</td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>DMC</td>
<td>Sorella et al. 2007</td>
<td>0.5</td>
<td>2.2(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diedrich et al. 2005</td>
<td></td>
<td>3.6(4)</td>
<td>3.0(4)</td>
</tr>
<tr>
<td></td>
<td>Korth et al. 2008</td>
<td></td>
<td>1.7(4)</td>
<td>3.8(4)</td>
</tr>
<tr>
<td>Experiment</td>
<td>Grover et al. 1987</td>
<td></td>
<td></td>
<td>2.4(4)*</td>
</tr>
<tr>
<td></td>
<td>Krause et al. 1991</td>
<td></td>
<td></td>
<td>1.6(4)*</td>
</tr>
</tbody>
</table>

*Calculations report D_e experiments report D_0. Park & Lee calculate a zpe of -0.3 kcal/mol for the T-Shaped dimer, and -0.2 kcal/mol for the PD geometry.

** darker blue color indicates MP2 geometries
Previous calculations

Binding energies [kcal/mol]

<table>
<thead>
<tr>
<th>Method</th>
<th>Authors</th>
<th>Face to Face</th>
<th>Parallel Displaced</th>
<th>T-Shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>Park & Lee 2006</td>
<td>3.03</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsuzuki et al. 2002</td>
<td>1.48*</td>
<td>2.48</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>Sinnokrot et al. 2004</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hobza et al. 1996</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jurecka et al. 2006</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podeszwa et al. 2006</td>
<td>2.42</td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>SAPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMC</td>
<td>Sorella et al. 2007</td>
<td>0.5</td>
<td>2.2(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diedrich et al. 2005</td>
<td>3.6(4)</td>
<td></td>
<td>3.0(4)</td>
</tr>
<tr>
<td></td>
<td>Korth et al. 2008</td>
<td>1.7(4)</td>
<td></td>
<td>3.8(4)</td>
</tr>
<tr>
<td>Experiment</td>
<td>Grover et al. 1987</td>
<td></td>
<td></td>
<td>2.4(4)*</td>
</tr>
<tr>
<td></td>
<td>Krause et al. 1991</td>
<td></td>
<td></td>
<td>1.6(4)*</td>
</tr>
</tbody>
</table>

*Calculations report D_e and experiments report D_0. Park & Lee calculate a zpe of -0.3 kcal/mol for the T-Shaped dimer, and -0.2 kcal/mol for the PD geometry.

** darker blue color indicates MP2 geometries

- **Small binding energies**
- **Computationally demanding calculations**
- **Unclear which method is most accurate**
Calculation Details

Parameters of Slater Trial Wavefunction
- B3LYP orbitals from Gaussian03
- Hartree-Fock pseudopotential and triple-zeta basis
 [Burkatzki, Filippi, Dolg]
- Geometries from Tsuzuki et al.

Quantum Monte Carlo Calculations
- CASINO QMC code [Needs, Towler et al.]
- Variance minimization of Jastrow and backflow parameters
- Select optimal cutoffs from single benzene

<table>
<thead>
<tr>
<th>Jastrow [a.u.]</th>
<th>VMC [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-n</td>
<td>e-e</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

- Casula “t mover” scheme used for CASINO DMC calculations
Wavefunction Benchmarking

CASINO vs. CHAMP

• Single benzene molecule

• Both have optimized Jastrow factors

• Hartree Fock orbitals
 • CASINO orbitals from Gaussian
 • CHAMP orbitals from Gamess
Wavefunction Benchmarking

CASINO vs. CHAMP

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
 - CASINO orbitals from Gaussian
 - CHAMP orbitals from Gamess

<table>
<thead>
<tr>
<th></th>
<th>CASINO</th>
<th>CHAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vmc</td>
<td>dmc</td>
</tr>
<tr>
<td>no tmoves</td>
<td>-37.637(2) (\text{var}=0.431(6))</td>
<td>-37.7076(8)</td>
</tr>
<tr>
<td>tmoves</td>
<td>-37.637(2) (\text{var}=0.431(6))</td>
<td>-37.7046(9)</td>
</tr>
<tr>
<td>no tmoves</td>
<td>-37.6306(9) (\text{var} = 0.446(4))</td>
<td>-37.7029(4)</td>
</tr>
</tbody>
</table>
Wavefunction Benchmarking

CASINO vs. CHAMP

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
 - CASINO orbitals from Gaussian
 - CHAMP orbitals from Gamess

<table>
<thead>
<tr>
<th>CASINO</th>
<th>CHAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vmc</td>
</tr>
<tr>
<td></td>
<td>-37.637(2) var=0.431(6)</td>
</tr>
<tr>
<td>no tmoves</td>
<td>-37.637(2) var=0.431(6)</td>
</tr>
<tr>
<td>tmoves</td>
<td>-37.6306(9) var=0.446(4)</td>
</tr>
<tr>
<td>no tmoves local channel= s</td>
<td>-37.6306(9) var=0.446(4)</td>
</tr>
</tbody>
</table>
Wavefunction Benchmarking

CASINO vs. CHAMP

- Single benzene molecule
- Both have optimized Jastrow factors
- Hartree Fock orbitals
 - CASINO orbitals from Gaussian
 - CHAMP orbitals from Gamess

<table>
<thead>
<tr>
<th></th>
<th>CASINO</th>
<th>CHAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vmc</td>
<td>dmc</td>
</tr>
<tr>
<td>no tmoves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no tmoves</td>
<td>-37.637(2)</td>
<td>-37.7076(8)</td>
</tr>
<tr>
<td></td>
<td>var=0.431(6)</td>
<td></td>
</tr>
<tr>
<td>tmoves</td>
<td>-37.637(2)</td>
<td>-37.7046(9)</td>
</tr>
<tr>
<td></td>
<td>var=0.431(6)</td>
<td></td>
</tr>
<tr>
<td>no tmoves</td>
<td>-37.6306(9)</td>
<td>-37.7029(4)</td>
</tr>
<tr>
<td>local channel= s</td>
<td>var =0.446(4)</td>
<td></td>
</tr>
</tbody>
</table>
We expect a timestep of 0.01 1/Ha to give binding energies better than 1 mHa.
Trial wavefunction optimization (single benzene)

Backflow most efficiently improves the benzene VMC energy
Trial wavefunction optimization (single benzene)

-37.62
-37.63
-37.64
-37.65
-37.66
-37.67
-37.68
-37.69
-37.7

VMC Energy (Ha)

Orbital optimization

Double zeta basis

Triple zeta basis

Quadruple zeta basis

Backflow transformation

Single CSF

Number of CSF’s

0
50
100
150
200

Backflow most efficiently improves the benzene VMC energy
Energy improvement from a Slater Jastrow wavefunction

Change in Energy (Ha)

- Backflow
- 139 CSFs
- Orbital Opt

VMC
DMC
Energy improvement from a Slater Jastrow wavefunction

Backflow improves the wavefunction the most

VMC

139 CSFs

Orbital Opt

DMC

Backflow improves the wavefunction the most
DMC benzene dimerization energies

<table>
<thead>
<tr>
<th>Trial Wavefunction</th>
<th>parallel displaced</th>
<th>T-shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slater-Jastrow</td>
<td>1.6(3) kcal/mol</td>
<td>2.8(4) kcal/mol</td>
</tr>
<tr>
<td>Slater-Jastrow-Backflow</td>
<td>3.1(6) kcal/mol</td>
<td>2.8(7) kcal/mol</td>
</tr>
</tbody>
</table>
DMC benzene dimerization energies

<table>
<thead>
<tr>
<th>Method</th>
<th>Authors</th>
<th>Face to Face</th>
<th>Parallel Displaced</th>
<th>T-Shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD(T)</td>
<td>Park & Lee 2006</td>
<td>3.03</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tsuzuki et al. 2002</td>
<td>1.48*</td>
<td>2.48</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>Sinnokrot et al. 2004</td>
<td>1.81</td>
<td>2.78**</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>Hobza et al. 1996</td>
<td>2.01</td>
<td></td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>Jurecka et al. 2006</td>
<td>2.73</td>
<td></td>
<td>2.74</td>
</tr>
<tr>
<td>SAPT</td>
<td>Podeszwa et al. 2006</td>
<td>2.42</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>DMC</td>
<td>Sorella et al. 2007</td>
<td>0.5</td>
<td>2.2(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diedrich et al. 2005</td>
<td>3.6(4)</td>
<td>3.0(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korth et al. 2008</td>
<td>1.7(4)</td>
<td></td>
<td>3.8(4)</td>
</tr>
<tr>
<td>Our results: SJ</td>
<td></td>
<td>1.6(3)</td>
<td>2.8(4)</td>
<td></td>
</tr>
<tr>
<td>Our results: SJB</td>
<td></td>
<td>3.1(6)</td>
<td></td>
<td>2.8(7)</td>
</tr>
<tr>
<td>Experiment</td>
<td>Grover et al. 1987</td>
<td>2.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Krause et al. 1991</td>
<td>1.6(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** darker blue color indicates MP2 geometries
Quantum Monte Carlo backflow calculations of benzene dimers

Kathleen Schwarz*, Cyrus Umrigar**, Richard Hennig***

*Cornell University Department of Chemistry, **Cornell University Department of Physics, ***Cornell University Department of Materials Science and Engineering

email contact: kas382@cornell.edu

Conclusions
Conclusions

The Benzene Dimer
Conclusions

The Benzene Dimer

- Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions

Quantum Monte Carlo backflow calculations of benzene dimers

Kathleen Schwarz, **Cyrus Umrigar**, **Richard Hennig**

*Cornell University Department of Chemistry, **Cornell University Department of Physics, ***Cornell University Department of Materials Science and Engineering

email contact: kas382@cornell.edu

Supported by DOE Petascale Initiative and an NSF GRF
Computational resources provided by CCNI and NCSA
Conclusions

The Benzene Dimer

• Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
• Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
Conclusions

The Benzene Dimer

• Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
• Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
• Backflow appears to increase the binding energy of the parallel displaced benzene dimer

Supported by DOE Petascale Initiative and an NSF GRF
Computational resources provided by CCNI and NCSA
Conclusions

The Benzene Dimer

• Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
• Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
• Backflow appears to increase the binding energy of the parallel displaced benzene dimer

Trial wave functions

Supported by DOE Petascale Initiative and an NSF GRF
Computational resources provided by CCNI and NCSA
Conclusions

The Benzene Dimer

• Lower energy structure appears to be the T-shaped dimer, for calculations with Slater Jastrow wavefunctions
• Further calculations will be done to determine if the jastrow and backflow cutoff distances alter the binding energy of the parallel displaced dimer (with backflow)
• Backflow appears to increase the binding energy of the parallel displaced benzene dimer

Trial wave functions

• Backflow more efficient than a multi-determinant expansion or orbital optimization in improving the wavefunction

Supported by DOE Petascale Initiative and an NSF GRF
Computational resources provided by CCNI and NCSA