Energy derivatives in fixed-node QMC: unbiased estimates with finite variance

Saverio Moroni, DEMOCRITOS, Trieste

The forces evaluated using equation (21) yield bond lengths for the SiH molecule with an error (with respect to DMC energy calculations) of much less than 0.01 Å, which is acceptable for most purposes. Of course, before claiming that the problem of calculating DMC forces is ‘solved’, accurate results for heavier atoms and larger systems are required. To this we should add the issues of efficient generation of the pure probability distribution for large systems, overcoming the ‘infinite variance’ described in section 7, obtaining accurate forms for ψ_T and $d\psi_T/d\lambda$, and (hopefully) removing the second approximation in equation (21). Notwithstanding these

We want an estimator of the derivatives of E_{FN}
- with finite variance
- fully consistent with E_{FN}
- to second order
Energy derivatives in QMC

\[E = \int E_L P \, dX/Z = \langle E_L \rangle \]

\[E' = \langle E'_L + (E_L - E)(\ln P)' \rangle \]

\[E'' = \langle E''_L + (E_L - E)(\ln P)'' \rangle + (E_L - E)(\ln P)'(\ln P)' + 2(E'_L - E')(\ln P)' \]

\[P = \Psi^2 \quad \text{Variational Monte Carlo} \]

\[P = \Psi \Phi_{FN} \quad \text{Fixed-node QMC} \]

these estimators have the zero-variance property
but their variance is actually infinite...
Fixed-node calculation by a Metropolis algorithm

- project a trial function in imaginary time

\[\Psi_\beta = e^{-\beta H/2} \Psi = (e^{-\tau H})^{P/2} \Psi \rightarrow \Psi_0, \quad \tau = \beta/P \]

- \(G(R, R'; \tau) \) short-time approximation of \(\langle R | e^{-\tau H} | R' \rangle \)

- express physical quantities as discretized path integrals

\[
Z_\beta = \langle \Psi_\beta | \Psi_\beta \rangle \int \Psi(R_0) \prod G(R_i, R_{i+1}; \tau) \Psi(R_P) dX
= \int P(X) dX; \quad X = \{R_0, \ldots, R_P\}
\]

\[
E_\beta = \frac{1}{Z_\beta} \langle \Psi_\beta | H | \Psi_\beta \rangle = \frac{1}{Z_\beta} \int E_L(R_0) P(X) dX \geq E_0
\]

- use a Metropolis algorithm (e.g. RQMC) to sample paths
a toy problem

1D particle in a box: \(H = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + \gamma x, \quad -L < x < L \)

trial function (wrong on purpose): \(\Psi(x) = \cos(kx)(1 + \alpha x) \)

sampling probability: \(P(X) = \Psi(x_0) \prod G(x_i, x_{i+1}; \tau) \Psi(x_M) \)

short time approximation:
\[
G(x_i, x_j : \tau) = e^{-(x_i - x_j)^2/2\tau} e^{-\gamma(x_i + x_j)} N(x_i, x_j; \tau)
\]

primitive nodal (Ceperley, 1996)

\[
N(x_i, x_j; \tau) = 1 - e^{-2d(x_i)d(x_j)/\tau}
\]

\[
d(x_i) = \left| \frac{\Psi(x_i)}{\partial x \Psi(x_i)} \right|
\]
energy vs. projection time and time step

energy vs. γ

points: calculated for different γ’s
line 1: from $E(0), E'(0), E''(0)$
line 2: fit to points

E', E'' consistent with E
derivatives: \(\frac{dE}{d\gamma}, \frac{d^2 E}{d\gamma^2} \) “bosonic”, \(\frac{dE}{dL}, \frac{d^2 E}{dL^2} \) “fixed node”

![Data trace plots](image-url)

infinite variance
\[
\frac{dE}{dL}, \frac{d^2E}{dL^2}
\] have infinite variance:

\[
\frac{dE}{dL} = \left\langle \frac{dE_L}{dL} + (E_L - E)\frac{d\ln P}{dL} \right\rangle
\]

\[
E_L(x) = \frac{1}{2} \left(\frac{\pi}{L} \right)^2 + \frac{\alpha}{1 + \alpha x} \frac{\pi}{L} \tan \frac{\pi}{L} x
\]

\[
P(X) = \Psi(x_0)(1 - e^{-2d_0d_1/\tau})(1 - e^{-2d_1d_2/\tau}) \times \ldots
\]

near a node:

\[
E_L \sim 1/d \quad P(x_i) \sim d^2(x_i)
\]

\[
dE_L/dL \sim 1/d^2 \quad d\ln P/dL \sim 1/d
\]

the integral of \(PE'_L \) is bounded, but the integral of \(P(E'_L)^2 \) is not (likewise for \(E_L(\ln P)' \))
as the walls are displaced, $L_0 \rightarrow L$, we change variable:

$$E(L) = \frac{\int dx E_L(L, y(L, x))P(L, y(L, x))J}{\int dx P(L, y(L, x))J}$$

$x \rightarrow y(L, x) = xL/L_0$

Jacobian \(J = L/L_0 \)

near the nodes, \(d \) remains unchanged upon displacing \(L \):

\(d(L_0, x) \sim d(L, y(L, x)) \) \quad \rightarrow \text{derivatives have finite variance.} \)

(trade-off: change of variable puts some noise elsewhere, e.g. in the free-particle action)
Data trace without / with change of variable

Estimators of E', E'' have finite variance

Blue line: polynomial fit to points
(Green: its quadratic part)
Red: $E + E'(L - 1) + \frac{1}{2} E''(L - 1)^2$

E', E'' consistent with interpolation of E
lithium dimer

Slater-Jastrow trial function:

- 1s,2s,2p STO 3G HF orbitals
- fit LCAO coefficients vs. n-n distance
- e-n cusp correction
- one-parameter e-e Jastrow \(\exp(ar/(1 + br)) \)

Probability density:

\[
P(X) = \Psi(R_0) \prod G(R_i, R_{i+1}; \tau) \Psi(R_M)
\]

short time approximation:

\[
G(R_i, R_{i+1}; \tau) = e^{-(R_i-R_{i+1})^2/2\tau} (1 - e^{-2d_id_{i+1}/\tau}) e^{-\sum u(r_{\alpha\beta}^{(i)}, r_{\alpha\beta}^{(i+1)})}
\]

free-particle nodal pair product
cumulant approximation to pair action (Ceperley, 1983)

\[
G(R', R, \epsilon) \propto e^{- (R-R')^2 / 2\epsilon} \left(1 - e^{-2dd' / \epsilon} \right) e^{- \sum_{i<j} u(r_{ij},r'_{ij},\epsilon)}
\]

\[s = |r - r'| \left(2\hbar^2 \epsilon / \mu \right)^{-1/2}\]

\[y = (r + r' + |r - r'|) \left(2\hbar^2 \epsilon / \mu \right)^{-1/2}\]

\[\gamma = e_i e_j \left(2\epsilon \mu / \hbar^2 \right)^{-1/2}\]

\[u(r, r', \epsilon) = \gamma \int_0^1 d\lambda \frac{1}{y + 2s\lambda} \text{erf} \left(\frac{y + 2s\lambda}{2[\lambda(1 - \lambda)]^{1/2}} \right)\]

one two-dimensional table
\[
dE/d\lambda \simeq (E(\lambda + \Delta) - E(\lambda))/\Delta
\]

\[
\begin{align*}
\lambda &\to \lambda + \Delta \quad \text{finite increment} \\
S &\to \tilde{S} \quad \text{change of nodal surface} \\
d &\to \tilde{d} \quad \text{change of nodal distance}
\end{align*}
\]

d change variables near the nodes so that :

\[
\tilde{d} = d
\]

\[
\tilde{R} = R + \xi(d)(d - \tilde{d})\hat{d}
\]

\[
\xi(d) \text{ smoothly goes from 0 to 1 as } d \to 0
\]

\[
J = 1 - (\tilde{d} - d)\xi'(d) \quad \text{(neglecting wave function curvature)}
\]
<table>
<thead>
<tr>
<th></th>
<th>calc.</th>
<th>fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'</td>
<td>-0.9198(36)</td>
<td>-0.9226</td>
</tr>
<tr>
<td>E''</td>
<td>0.0791(48)</td>
<td>-0.0773</td>
</tr>
</tbody>
</table>

blue line: polynomial fit to energies
green line: quadratic part of the fit
red line: quadratic expansion from calculated derivatives