Some developments in QMC for solids

QMC in the Apuan Alps
July 27, 2009

Ken Esler, Jeongnim Kim, R.E. Cohen,
Luke Shulenburger, David Ceperley
Outline

• All-electron vs. PP calculations in solids
 – Pseudopotential discrepancies
 – All-electron simulation in solids
 – Combining AE and PP data

• Mixed-basis representation for orbitals
 – Storage bottlenecks
 – Older approaches
 – Mixed-basis representation

• QMC simulations on GPUs
 – Intro to GPU computing
 – QMCPACK on GPUs
Pseudopotentials

• QMC is only as good as the Hamiltonian
 – Early days: all-electron for small molecules
 – Pseudopotentials grudgingly adopted later
 – Very good work in constructing PPs for DFT and QMC

• DFT has good ways to evaluate PPs
 – All-electron calculations for small systems verify transferability

• Can we do the same for QMC?
Pseudopotential bias
Example: EOS of c-BN

• 3 PPs give 3 different equations of state
• HF vs. DFT does not appear to be the difference
• No a priori way to know which is the “best”
• PPs were each constructed well, but with different theory.
• Can we do better?
Pseudopotential bias

- 3 PPs give 3 different equations of state
- HF vs. DFT does not appear to be the difference
- No a priori way to know which is the “best”
- PPs were each constructed well, but with different theory.
- Can we do better?
All-electron QMC for solids

- In DFT, we test transferability against LAPW or PAW calculations
- Can we do the same in QMC?
 - Expensive?
 - Not too bad for first-row solids
 - Still too expensive to large supercells
 - Combine PP data with AE data?
 - Where do we get our trial wave functions?
AE QMC for solids: LAPW methodology

- Inside the “muffin tins”, orbitals are expanded in spherical harmonics
 \[\phi_{MT}^{nk\alpha}(r) = \sum_{\ell=0}^{\ell_{\text{max}}} \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\hat{r}) \sum_{G} c_{G}^{nk} \sum_{j=1}^{M_{\ell}^\alpha} A_{j\ell m}^{\alpha}(G + k) f_{j\ell}^{\alpha}(r) \]

- Outside, use plane-waves
 \[\phi_{\text{int.}}^{nk} = \sum_{G} c_{G}^{nk} e^{i k \cdot r} \]

- PWs and \(Y_{\ell}^{m} \)s are matched at MT boundary

- LAPW order, M, gives the order of matching
 - Order 1 matches value only (allows “kinks”)
 - Order 2 gives smooth matching
 - Matching only exact as \(\ell_{\text{max}} \to \infty \)
AE QMC for solids: QMC methodology

Do sums over G and j offline:

\[\phi_{MT}^{nk\alpha}(r) = \sum_{\ell,m} u_{\ell m}^{nk\alpha}(|r - I_\alpha|) Y_{\ell}^{m} (\hat{\Omega}) \]

\[u_{\ell m}^{nk\alpha}(r) = \sum_{G} c_{G}^{nk} \sum_{j=1}^{M_{\ell}^{\alpha}} A_{j\ell m}^{\alpha}(G + k) f_{j\ell}^{\alpha}(r) \]

- Use super-LAPW ($M=2$) to ensure WF is smooth
- Use l_{max} = \sim10 for good continuity!
- Optionally use blending function to ensure variational WF
- Represent $u_{\ell m}$ as 1D splines (expect near origin)
- Evaluate all splines at once for efficiency
- Use 3D B-splines (BLIPS) for interstitial region
AE QMC for solids: Practical details

- Modified EXCITING (now Elk) FP-LAPW code
 - Remove relativistic corrections
 - Export orbitals in HDF5 format
- Requires smaller time-step than PP calculations
- Too expensive to do large supercell
- Can we combine AE simulation with PP data?
 - Yes, but only if the cell is big enough that core states do not contribute to the finite-size errors
 - Core bands are flat: no momentum quantization error
 - Periodicity of exchange-correlation hole?
Combining AE and PP data

Core orbital
- Valence electron 1
- Valence electron 2
- Core electron
Combining AE and PP data: Results

- Once AE correction is applied, data from 3 PPs come into agreement
- Corrected EOS gives good agreement with experiment at low pressure
Mixed basis representation for orbitals
3D cubic B-spline basis (blips)

- Generalize to 3D with tensor product of 1D functions
 - 64 nonzero elements at any point in space
 - Very fast to evaluate
- Store 1 coefficient per grid point
- Required grid spacing determined by hardness of PPs
- Storage goes as N^2
- May have insufficient RAM for otherwise doable problems

- Local basis from piecewise continuous, smooth polynomials
- Functions centered on grid points
- Strictly local: only 4 nonzero elements at any point in 1D
Previous solutions to the storage problem

• Share the orbitals on an SMP node
 – Allows 8-16 GB on current clusters
 – Can get to fairly large systems for perfect crystals
 – Disordered systems require more storage
 • e.g. 32 water molecules = 11 GB
 – In QMCPACK and in latest CASINO

• Distribute the orbitals with MPI
 – Requires frequent small messages
 – Can impose a performance penalty
Previous solutions to the storage problem: Nonuniform splines

- Short-wavelength oscillations are only around ions
- First, localize the orbitals around the ions
 - Alfe and Gillan
 - Reboredo and Williamson
- Use nonuniform B-spline with basis concentrated around ions
- Nonuniform error much smaller for the same number of points
Previous solutions to the storage problem: Nonuniform splines

- Appears to work for systems that can be well-localized
- Each localized orbital has a different center
- Cannot amortize the basis function cost
- Band index cannot be fastest index in memory
- Slower to evaluate than uniform, extended B-splines
Mixed-basis representation

- Use same form inside muffin tins as with LAPW orbitals
- Projection onto spherical harmonics can be done analytically:

\[u_{\ell m}^{nk\alpha} (r) = 4\pi i^\ell \sum_G c_{G}^{nk} e^{-i(G+k)\cdot \mathbf{r}} j_{\ell} (r|G + k|) \left[Y_{\ell m}^m (G + k) \right]^* \]

- Must choose radii and \(l_{max} \)
- For FeO, use \(l_{max} = 5 \)
 - Yields 144 coefficients reads per evaluation
 - More than 3D B-spline (64),
 - Radial splines only evaluated once per PP quadrature
 - Runs at about the same speed as standard approach
Mixed basis representation: FeO example

- Near ions:
 - 3D splines handle function value well,
 - but not the Laplacian.
 - Laplacian is continuous, but not smooth.
 - Atomic orbitals handle both well with a fine 1D grid
Mixed basis representation: FeO example

- Near ions:
 - 3D splines handle function value well,
 - but not the Laplacian
 - Laplacian is continuous, but not smooth
 - Atomic orbitals handle both well with a fine 1D grid
Mixed basis representation: Energy

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids
Mixed basis representation: Variance

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids
Mixed basis representation: Variance ratio

- DMC energy
 - 3D B-spline okay down to ~60 points per dir.
- DMC variance
 - Always lower for hybrid representation
 - Many times lower for very coarse grids
Mixed basis representation: Time step error

- Lower variance of local energy also gives smaller time step error
- Hybrid representation with coarse mesh gives lower time step error than B-spline only with fine mesh
Mixed basis summary

• With mixed basis, we appear to get the same $dt->0$ answer, in about the same time, with lower variance, with about 1/8 the memory requirement
• Very effective for hard PPs (e.g. those with semicore states)
• Not as effective with light, molecular systems (e.g. water)
QMC using graphics processors (GPUs)
Why are GPU's interesting?

- **CPU**
 - 40-60 GFLOPS DP
 - 80-120 GFLOPS SP
 - 10-30 GB/s memory bandwidth
 - Optimized for single-thread performance

- **GPU**
 - 85 GFLOPS DP
 - 1 TFLOP SP
 - 100-150 GB/s memory bandwidth
 - Technology on steeper trajectory than CPUs
 - Optimized for throughput
Why are GPU's interesting?

• CPU
 – Hide memory latency with large cache
 – A lot of logic for:
 • Instruction reorder
 • Branch prediction
 • Prefetching
 – Relatively few FPUs

• GPU
 – Hide memory latency through simultaneous multithreading (SMT)
 – In-order execution - little control logic
 – Many more FPUs
 – Very wide memory bus (e.g. 512 bit)
Market drivers

• GAMES!
 – Gamers buy a new card each year
 – Always want better performance
 – FLOPS/Bandwidth makes better graphics
 – Game designers want flexibility of GPGPU

• Media
 – Content producers using GPUs
 – E.g. Adobe CS4

• Finance

• Medical

• Oil
 – HPC for science
NVIDIA G200

1.4 billion transistors
And now for something completely different...

- GPU architecture
 - Is it a vector processor?
 - Or is it a barrel processor?
 - Or is it a multicore processor?

- YES!
Barrel processors

- Alternative solution to memory latency problem
- Send many independent threads to processor
- Processor executes instructions in a thread sequentially until it blocks
- Whenever a thread blocks, move on to the next thread
- With enough threads in the barrel, memory latency can be completely hidden
- Requires many independent tasks which can run in parallel
Vector processors

- Execution logic is expensive
- Perform the same instruction on multiple data (SIMD)
- x86 has short vector instructions (SSE)
 - 4 for single prec.; 2 for double precision
- GPU variation: SIMT
 - Each thread has its own data
 - Each thread executes same inst., but writing result can be masked with conditionals
 - Vector length is variable, but multiple of 32
Multicore processors

- GPUs are separated into independent units
 - Data can be exchanged on the same unit for a given kernel (shared memory)
 - Data can be exchanged between units through DRAM
 - Data can be exchanged with CPU through API calls (slow!)
 - NVIDIA G200: 30 processor cores

- Need hundreds of independent threads to keep GPU busy
GPU memory bandwidth

- NVIDIA Tesla: 100 GB/s
- AMD 4870: 115 GB/s

How?
- Very fast DRAM (GDDR3-GDDR5)
- Very wide bus (256-512 bits)

Requires very wide, aligned reads
- Read 16 floats or 8 doubles at time
- Reads must be sequential and 64-byte aligned
GPU programming

• “Host” (CPU) does I/O, complicated processing, etc.
• GPU executes “kernels”: small functions to do one task many times
 – Limited number of registers and shared memory
 – All cores execute the same kernel
 – Single precision is very fast
 – Double precision is faster than CPU, but much slower than single precision
• Data is passed between CPU and GPU memory across PCI bus with API calls
 – Currently 1.5 – 8 GB/s: SLOW!
CUDA

- NVIDIA's extensions to C/C++ to allow GPU execution
- Mix CPU and GPU code in the same file
- A few language extensions for device code
- A few API calls for memory allocation, data transfer, etc.
- Challenges:
 - Debugging: synchronization bugs, no "printf" on GPU!
 - Memory layout and access patterns!
 - Pointer book-keeping
 - Exposing parallelism
- Very good forum (CUDA zone)


```c
__global__ void two_body_sum_kernel(float R[], int e1_first, int e1_last, int e2_first, int e2_last, float spline_coefs[], int numCoefs, float rMax, float lattice[], float latticeInv[], float sum[])
{
    // Some setup goes here...
    int N1 = e1_last - e1_first + 1;
    int N2 = e2_last - e2_first + 1;
    int NB1 = (N1+BS-1)/BS;
    int NB2 = (N2+BS-1)/BS;

    float mysum = (float)0.0;
    for (int b1=0; b1 < NB1; b1++) {
        // Load block of positions from global memory
        for (int i=0; i<3; i++)
            if ((3*b1+i)*BS + tid < 3*N1)
                r1[0][i*BS + tid] = myR[3*e1_first + (3*b1+i)*BS + tid];
        __syncthreads();
        int ptcl1 = e1_first+b1*BS + tid;
        for (int b2=0; b2 < NB2; b2++) {
            // Load block of positions from global memory
            for (int i=0; i<3; i++)
                if ((3*b2+i)*BS + tid < 3*N2)
                    r2[0][i*BS + tid] = myR[3*e2_first + (3*b2+i)*BS + tid];
            __syncthreads();
            // Now, loop over particles
            int end = (b2+1)*BS < N2 ? BS : N2-b2*BS;
            for (int j=0; j<end; j++) {
                int ptcl2 = e2_first + b2*BS+j;
                float dx, dy, dz;
                dx = r2[j][0] - r1[tid][0];
                dy = r2[j][1] - r1[tid][1];
                dz = r2[j][2] - r1[tid][2];
                float dist = min_dist(dx, dy, dz, L, Linv);
                if (ptcl1 != ptcl2 && (ptcl1 < (N1+e1_first) ) && (ptcl2 < (N2+e2_first)))
                    mysum += eval_1d_spline (dist, rMax, drInv, A, coefs);
            }
        }
    }

    // Sum result over threads
    __shared__ float shared_sum[BS];
    shared_sum[tid] = mysum;
    __syncthreads();
    for (int s=BS>>1; s>0; s >>=1) {
        if (tid < s)
            shared_sum[tid] += shared_sum[tid+s];
        __syncthreads();
    }
    // Avoid double-counting
    float factor = (e1_first == e2_first) ? 0.5 : 1.0;
    if (tid==0)
        sum[blockIdx.x] += factor*shared_sum[0];
}
```

QMC in Apuan Alps 2009 36
QMCPACK

- Developed at UIUC
 - Principal developer:
 - Jeongnim Kim
- C++ code with extensive template optimizations
- Hybrid OpenMP/MPI parallelization model
- Uses XML and HDF5 standards
- Object-oriented design for extensibility
- Open source and freely available

- Orbitals
 - Gaussian, STOs, PW, B-spline, mixed-basis, LAPW
 - Real or complex WFs
- VMC, DMC, and RMC
- Standard variance and energy opt. methods
- Scaled to 100k cores
- Works with ABINIT, Pwscf, Qbox, Gaussian, etc.
QMC on a GPU

- **Advantages:**
 - Walkers provide plenty of work for a GPU kernel

- **Challenges:**
 - Orbital storage: orbitals must fit in 4 GB GPU memory. Distribution on multiple cards could be expensive.
 - Many kernels
 - Orbital evaluation
 - Determinant evaluation, ratios, and update
 - Jastrow evaluation and ratios
 - Coulomb interaction, Ewald sums
 - Pseudopotential ratios
 - Other observables
QMCPACK on GPU

- Reimplemented VMC & DMC drivers to be walker-parallel, but still particle by particle
- Implemented walker-parallel kernels for:
 - B-spline orbital evaluation
 - Determinant updates, ratios, inverses, gradients, laplacians, etc.
 - One-body and two-body B-spline Jastrows
 - Periodic coulomb interaction
 - Nonlocal pseudopotentials
- Single precision for everything but occasional inverse recomputation
- Use texture units for 1D potential interpolation
- Keep all walker-related data in GPU memory
- CPU proposes, accepts/rejects moves; branches; collects averages and does I/O.
Test: 64-atom diamond

- 64-atom DMC simulation of diamond
- Burkaztki et al. PP
- LDA orbitals
- 1+2-body Jastrow
 - Optimized on CPU
- \(dt=0.01/\text{Hartree} \)
- Simple EOS calculation
 - No phonons
 - No finite-size corrections
CPU vs. GPU: Accuracy

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse
CPU vs. GPU: Accuracy

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse
CPU vs. GPU: Accuracy

- CPU and GPU give the same results within statistical error.
- GPU uses single precision for all but recomputing the inverse.

![Graph showing pressure vs. volume for a 64-atom diamond simulation.]
CPU vs. GPU: Accuracy

- CPU and GPU give same results within statistical error
- GPU uses single precision for all but recomputing inverse
CPU vs. GPU: Speed

- **CPU run**
 - Cray XT5 (Kraken)
 - 3072 Opteron cores
 - 1280 walkers per V
 - Double precision
 - Block time: 21.0 seconds

- **CPU + GPU run**
 - Dell cluster (Lincoln)
 - 48 G200 GPUs (+48 Xeon cores)
 - 1280 walkers per V
 - Mixed precision
 - Block time: 24.4 seconds

1 G200 GPU = ~14 quad-core Opterons
CPU vs. GPU: Speed

- 32-atom MnO simulation
- We need many walkers per GPU to saturate speed
- May run out of GPU memory first
- May require long wall clock time
GPU kernel breakdown

<table>
<thead>
<tr>
<th>Function</th>
<th>Time Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>update inverse_cuda2</td>
<td>12087</td>
</tr>
<tr>
<td>update inverse_cuda1</td>
<td>12087</td>
</tr>
<tr>
<td>eval_multi_multi UB spline 3d c vgl kernel</td>
<td>12760</td>
</tr>
<tr>
<td>phase_factor_kernel-0</td>
<td>12760</td>
</tr>
<tr>
<td>eval_multi_multi UB spline 3d c kernel</td>
<td>1044</td>
</tr>
<tr>
<td>phase_factor_kernel-1</td>
<td>1044</td>
</tr>
<tr>
<td>two_body_grad_lapl_kernel_fast</td>
<td>44</td>
</tr>
<tr>
<td>two_body_NLratio_kernel</td>
<td>44</td>
</tr>
<tr>
<td>two_body_ratio_grad_kernel_fast</td>
<td>24176</td>
</tr>
<tr>
<td>inverse_many_pivot</td>
<td>4</td>
</tr>
<tr>
<td>memcpy</td>
<td>74137</td>
</tr>
<tr>
<td>two_body_grad_kernel_fast</td>
<td>24176</td>
</tr>
<tr>
<td>one_body_ratio_grad_kernel_fast</td>
<td>24176</td>
</tr>
<tr>
<td>coulomb_AA_kernel</td>
<td>11</td>
</tr>
<tr>
<td>calc_ratio_grad_lapl</td>
<td>12088</td>
</tr>
<tr>
<td>calc_grad_kernel</td>
<td>12088</td>
</tr>
<tr>
<td>one_body_grad_kernel_fast</td>
<td>24176</td>
</tr>
<tr>
<td>calc_many_ratios_kernel</td>
<td>1044</td>
</tr>
<tr>
<td>one_body_NLratio_kernel_fast</td>
<td>44</td>
</tr>
<tr>
<td>eval_rhok_kernel</td>
<td>33</td>
</tr>
<tr>
<td>coulomb_AA_kernel</td>
<td>22</td>
</tr>
<tr>
<td>multi_copy</td>
<td>12091</td>
</tr>
<tr>
<td>accept_kernel</td>
<td>12088</td>
</tr>
<tr>
<td>find_core_electrons_kernel</td>
<td>22</td>
</tr>
<tr>
<td>one_body_grad_lapl_kernel</td>
<td>22</td>
</tr>
<tr>
<td>all_ratios_grad_lapl_kernel</td>
<td>22</td>
</tr>
<tr>
<td>convert-1</td>
<td>4</td>
</tr>
<tr>
<td>convert-0</td>
<td>4</td>
</tr>
<tr>
<td>vk_sum_kernel2-0</td>
<td>33</td>
</tr>
<tr>
<td>vk_sum_kernel2-1</td>
<td>22</td>
</tr>
<tr>
<td>memcpyDtoD_aligned</td>
<td>2</td>
</tr>
</tbody>
</table>

- **Inverse update**: 30.00%
- **2-body**: 18.00%
- **B-spline**: 17.00%
- **eikr**: 13.00%
- **1-body**: 5.00%
- **Inverse recomp.**: 4.00%
- **Data transfer**: 3.50%
- **Remainder**: 9.50%
Future work

- **WF optimization**
 - Derivatives w.r.t. WF parameters
- **Larger systems?**
- **Generalize**
 - Nonperiodic BC
- **More WFs**
 - Hybrid orbitals
 - Atomic bases
 - 3-body Jastrows
 - Multideterminant?
- **More estimators**
 - MPC
 - Pair correlation
Future speculation

- **NVIDIA**
 - Continue to support CUDA/OpenCL
 - Next gen. (GT300)
 - Due 4th quarter
 - About 2.5x faster?
 - Faster double precision
 - FORTRAN
 - PGI GPU extensions

- **AMD**
 - OpenCL out soon
 - Next gen (RV870)
 - Due October?
 - 2.1 TFLOPS (SP)
Future speculation: Intel Larrabee

- 32-48 Pentium-class cores
 - In order execution
 - Vector unit
 - 16-wide single prec.
 - 8-wide double prec.
 - Vector complete
 - Traditional cache-coherent arch.

- Will be supported by Intel compiler
 - Should be able to vectorize well
 - Easier than CUDA/OpenCL?

- First half of 2010
- Performance for QMC?
The End
Memory performance: Bandwidth

- 50 GFLOPS / (10GB/s / 8 bytes/double) = 40 FLOPs per load/store
- If algorithm has low compute/fetch, you get bad performance
- CPUs again use cache to increase effective bandwidth
CPU vs. GPU: Accuracy

32-atom MnO VMC no Jastrow

<table>
<thead>
<tr>
<th>Energy</th>
<th>CPU</th>
<th>Error</th>
<th>GPU</th>
<th>Error</th>
<th>Difference</th>
<th>Diff/sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic</td>
<td>61.31310</td>
<td>0.00180</td>
<td>61.31057</td>
<td>0.00081</td>
<td>0.00253</td>
<td>1.3</td>
</tr>
<tr>
<td>e-e</td>
<td>17.68930</td>
<td>0.00095</td>
<td>17.68698</td>
<td>0.00049</td>
<td>0.00232</td>
<td>2.2</td>
</tr>
<tr>
<td>Local PP</td>
<td>-105.98920</td>
<td>0.00230</td>
<td>-105.58310</td>
<td>0.00110</td>
<td>-0.00600</td>
<td>2.4</td>
</tr>
<tr>
<td>Nonlocal PP</td>
<td>-8.20833</td>
<td>0.00072</td>
<td>8.20878</td>
<td>0.00042</td>
<td>0.00045</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>-118.09989</td>
<td>0.00027</td>
<td>-118.09926</td>
<td>0.00015</td>
<td>-0.00063</td>
<td>2.0</td>
</tr>
</tbody>
</table>
CPU vs. GPU: Speed

- **Jaguar:**
 - 6.71 walker “steps” per proc sec.

- **Lincoln**
 - 67.3 walker “steps” per GPU sec.
OpenCL Working Group

- Diverse industry participation
 - Processor vendors, system OEMs, middleware vendors, application developers
- Open, vendor-neutral royalty-free standard
 - Developed under standard Khronos IP framework
- Apple will use OpenCL
 - Performance-enhancing technology will be used in Mac OS X Snow Leopard
CPU vs. GPU: Speed

- **CPU**
 - 8 Abe nodes (64 cores)
 - Double precision
 - 8 hours
 - 8.63 million “moves”
 - 18.73 moves/(proc sec)

- **GPU**
 - 1 NVIDIA GTX260
 - $250
 - 896 MB
 - 320 walkers
 - Mixed prec.
 - 9.7 hours
 - 8.00 million moves
 - 228.8 moves/(proc sec)

12x faster than quad-core Xeon
Why do QMC on a GPU?

- Walker parallelism is ideally suited for massively multithreaded model
- Decent speedups can be attained
- The future of HPC looks like it will include GPUs as a big part
- It's not nearly as hard as it used to be
- Looks like it will be easier in the future
Why not do QMC on a GPU?

• No single-point of entry, many kernels need to be written and tuned
• Need to rethink code structure
• No REALLY big machines exist yet
• Debugging can be a challenge
• Making predictions is hard, especially about the future: I could be wrong.
Memory performance: Latency

• DRAM is slow
 – A fetch from RAM can take 100-200 clock cycles.

• CPUs hide latency with cache
 – 3 levels:
 • L1: 64 KB
 • L2: 256 KB
 • 8 MB L3

• It's up to the programmer to make good use of cache, but not always possible