Quantum Monte Carlo Calculations of Point Defects in Alumina

Nicholas Hine

Condensed Matter Theory Group
Imperial College London

Sunday 22nd July 2007
Dramatis Personae

Collaborators

Matthew Foulkes
Mike Finnis
Kilian Frensch
Nicole Benedek

&

Imperial College HPC Facility
Outline

1. Point Defects
 - Thermodynamics of Defect Formation Energies
 - Point Defects in Alumina
 - Why DMC?

2. Results
 - Geometry
 - Formation Energies
 - Outlook

3. Coulomb Interactions
 - The Problem
 - Makov-Payne
 - Better Ideas

4. Summary
Outline

1. **Point Defects**
 - Thermodynamics of Defect Formation Energies
 - Point Defects in Alumina
 - Why DMC?

2. **Results**
 - Geometry
 - Formation Energies
 - Outlook

3. **Coulomb Interactions**
 - The Problem
 - Makov-Payne
 - Better Ideas

4. **Summary**
Many types of point defect in crystals, “frozen” in during crystallisation:

Concentrations $[X]$ of each species depend on formation energy G_f and entropy s_v per defect, according to Law of Mass Action:

$$[X] \sim e^{s_v/k} e^{-G_f/kT}$$
Defect Properties

Defects can exist in multiple charge states: Free charges at defect sites form F-centres (Farbenzentrum) which interact strongly with light.

Defect concentrations strongly affect material properties (optical, electrical, mechanical, chemical etc).

Same mineral (Corundum) different defects: Corundum, Ruby and Sapphire
Direct Comparison of Total Energies

Compare energy of supercell with and without defects, subtract energy of missing/added atoms:

$$\Delta E_{\text{def}} = E_{\text{def}} - E_{\text{perf}} - \Delta E_{\text{atoms}}$$

Potentially misleading. Strongly dependent on accuracy of atomic calculation. DMC would make this better but real concentrations depend on μ_i at time the crystal forms.
Gibbs Free Energies

Formation at constant $P, T \rightarrow$ Minimise Gibbs Free Energy G.

Write formation energy in terms of defect supercell and chemical potentials of components:

$$\Delta G_f = E_{def} - \sum_{\text{species}, i} n_i \mu_i$$

Energy of same supercell of bulk is $E_{perf} = \sum_i (n_i - \Delta n_i) \mu_i$.

For neutral defects in Alumina we get

$$\Delta G_f = E_{def} - E_{perf} - \Delta n_{Al} \mu_{Al} - \Delta n_{O} \mu_{O}$$

So e.g. for an oxygen vacancy, charge 0 (an F centre):

$$\Delta G_f = E_{def}^{q=0} - E_{perf} + \mu_{O}$$
Gibbs Free Energies

Formation at constant $P, T \rightarrow$ Minimise Gibbs Free Energy G.

Write formation energy in terms of defect supercell and chemical potentials of components:

$$\Delta G_f = E_{def} - \sum_{\text{species}, i} n_i \mu_i$$

Energy of same supercell of bulk is $E_{perf} = \sum_i (n_i - \Delta n_i) \mu_i$.

For neutral defects in Alumina we get

$$\Delta G_f = E_{def} - E_{perf} - \Delta n_{Al} \mu_{Al} - \Delta n_{O} \mu_{O}$$

So e.g. for an oxygen vacancy, charge 0 (an F centre):

$$\Delta G_f = E_{\text{def}}^{q=0} - E_{perf} + \mu_{O}$$
Gibbs Free Energies

Formation at constant $P, T \rightarrow$ Minimise Gibbs Free Energy G.

Write formation energy in terms of defect supercell and chemical potentials of components:

\[
\Delta G_f = E_{\text{def}} - \sum_{\text{species}, i} n_i \mu_i
\]

Energy of same supercell of bulk is $E_{\text{perf}} = \sum_i (n_i - \Delta n_i) \mu_i$.

For neutral defects in Alumina we get

\[
\Delta G_f = E_{\text{def}} - E_{\text{perf}} - \Delta n_{\text{Al}} \mu_{\text{Al}} - \Delta n_{\text{O}} \mu_{\text{O}}
\]

So e.g. for an oxygen vacancy, charge 0 (an F centre):

\[
\Delta G_f = E_{\text{def}}^{q=0} - E_{\text{perf}} + \mu_{\text{O}}
\]
For charged defects, consider system connected to electron reservoir at μ_e.

Zero of energy is arbitrary and is irrelevant in uncharged systems. End result contains E^{q}_{def} and $q\mu_e$ so is independent of zero of potential.

Can refer μ_e to the defect system, but E^{def}_{VBM} is obscured by levels of defect, which move VBM and CBM of defect cell:
Usual choice is

\[
\mu_e = E_{VBM}^{perf} + (V_{av}^{def} - V_{av}^{perf}) + \epsilon_F
\]

where

\[
E_{VBM}^{perf} = E_{q=0}^{perf} - E_{q=+1}^{perf}
\]

So e.g. for an oxygen vacancy, charge +1 (an F\(^+\) centre):

\[
\Delta G_f = E_{def}^{q=+1} - E_{perf} + \mu_O + 1 \times (E_{VBM}^{def} + \epsilon_F)
\]
Individual ΔG_f's contain μ_O, μ_{Al}, $\epsilon_F \rightarrow$ not measurable

Some charge neutral combinations of defects are independent of these: (Schottky quintets $3V_O^{+2} + 2V_{Al}^{-3}$, Frenkel pairs $O_i^{-2} + V_O^{+2}$ and $Al_i^{+3} + V_{Al}^{-3}$)
Alumina

a k a Corundum / Aluminium Oxide / Al$_2$O$_3$

- Complex Structure due to 2:3 coordination. Complex bonding: part ionic, part covalent

- Difficult to study point defects experimentally

- G_f's of all four main types of defect similar in value (\sim 5eV)
Formation Energies

- Value of ϵ_F depends on presence or absence of conduction electrons
- Hence on \textit{doping} by divalent or tetravalent impurities (\textit{c.f.} trivalent Al$^{3+}$)
- Alumina is amphoteric: Diffusion dominated by V_O, Al$_I$ in presence of divalent impurities which \textit{lower} ϵ_F (\textit{e.g.} Mg$^{2+}$)
- But dominated by O$_I$, V$_{Al}$ in presence of tetravalent impurities (\textit{e.g.} Ti$^{4+}$) which \textit{raise} ϵ_F
- V_O (esp its diffusion) is of great technological importance
Value of ϵ_F depends on presence or absence of conduction electrons

Hence on *doping* by divalent or tetravalent impurities (*c.f.* trivalent Al$^{3+}$)

Alumina is amphoteric: Diffusion dominated by V_O, Al$_I$ in presence of divalent impurities which lower ϵ_F (*e.g.* Mg$^{2+}$)

But dominated by O$_I$, V$_{Al}$ in presence of tetravalent impurities (*e.g.* Ti$^{4+}$) which raise ϵ_F

V_O (esp its diffusion) is of great technological importance
In general, one type of disorder dominates. Experimental determination relies on fitting coefficients to models → unreliable

(Empirical) Pair potential methods get order of ΔG_f’s depending strongly on potentials used

More complex defect clusters such as V_{AlO} have also been suggested as significant

Suggests need for Ab Initio calculation with high accuracy
Why DMC?

Table: Formation and Atomisation Energies (all in eV). \(\Delta H_0^{Al} \) and \(\Delta H_0^{O} \) are the formation energies per atom of Al and O atoms in the gas phase. \(\Delta H_0^{AlO} \) is the formation energy of an \(AlO \) molecule. \(\Delta a H_0^{Al_2O_3} \) and \(\Delta f H_0^{Al_2O_3} \) are the atomisation and formation (cohesive) energies per formula unit of alumina.

<table>
<thead>
<tr>
<th>Method</th>
<th>(\Delta H_0^{Al})</th>
<th>(\Delta H_0^{O})</th>
<th>(\Delta H_0^{AlO})</th>
<th>(\Delta a H_0^{Al_2O_3})</th>
<th>(\Delta f H_0^{Al_2O_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA-USP</td>
<td>4.05</td>
<td>3.62</td>
<td>0.91</td>
<td>-37.09</td>
<td>-18.15</td>
</tr>
<tr>
<td>LDA-DF</td>
<td>4.10</td>
<td>3.67</td>
<td>1.13</td>
<td>-36.48</td>
<td>-16.95</td>
</tr>
<tr>
<td>GGA-USP</td>
<td>3.41</td>
<td>2.82</td>
<td>0.74</td>
<td>-30.22</td>
<td>-14.94</td>
</tr>
<tr>
<td>DMC</td>
<td>3.47(1)</td>
<td>2.54(1)</td>
<td>0.68(1)</td>
<td>-32.62(3)</td>
<td>-18.04(3)</td>
</tr>
<tr>
<td>Experiment</td>
<td>3.42</td>
<td>2.58</td>
<td>0.69</td>
<td>31.95</td>
<td>-17.37</td>
</tr>
</tbody>
</table>
Why DMC?

Previous studies of defects:

Suggests proper treatment of correlation crucial to correct treatment of defect electronic structure
In case this is not yet convincing:
Occupied defect states deriving from conduction band states
are too low energy because of DFT gap underestimation.

Correction is \(m \times \Delta E_g \)

or more precisely:
\[
\sum_{i \text{ def}} \sum_{j \text{ cond}} |\langle \psi_i | \psi_j \rangle|^2 \times \Delta E_g = \sum_{i \text{ def}} \left(1 - \sum_{j \text{ occ}} |\langle \psi_i | \psi_j \rangle|^2 \right) \times \Delta E_g
\]
In case this is not yet convincing:
Occupied defect states deriving from conduction band states are too low energy because of DFT gap underestimation.

Correction is $m \times \Delta E_g$

or more precisely:

$$\sum_{i \text{ def}} \sum_{j \text{ cond}} |\langle \psi_i | \psi_j \rangle|^2 \times \Delta E_g = \sum_{i \text{ def}} \left(1 - \sum_{j \text{ occ}} |\langle \psi_i | \psi_j \rangle|^2 \right) \times \Delta E_g$$
Why not VMC?

Inhomogeneity of defect locale renders VMC extremely challenging
Different χ-terms for 1NN, 2NN and defect site helps
Formation energies still uniformly several eV too large
Method

Run DMC in $2 \times 2 \times 1$ hexagonal cell (still quite large as hexagonal unit cell contains 30 atoms).

$2 \times 2 \times 1 \Rightarrow 120 \text{ atoms}, 576 \text{ electrons} \Rightarrow \text{feasible.}$

k–point sample and extrapolate to large cell sizes in DFT, add correction to DMC results
Run DMC in $2 \times 2 \times 1$ hexagonal cell (still quite large as hexagonal unit cell contains 30 atoms).

$2 \times 2 \times 1 \Rightarrow 120 \text{ atoms, 576 electrons} \Rightarrow \text{feasible.}$

k–point sample and extrapolate to large cell sizes in DFT, add correction to DMC results
Outline

1. Point Defects
 - Thermodynamics of Defect Formation Energies
 - Point Defects in Alumina
 - Why DMC?

2. Results
 - Geometry
 - Formation Energies
 - Outlook

3. Coulomb Interactions
 - The Problem
 - Makov-Payne
 - Better Ideas

4. Summary
Bondlengths relax by up to 10% for 1NN. Gain from 0.05eV to 4eV, depending on charge state. Static lattice calculations clearly inaccurate.

If defect site retains same charge, relaxation is minimal (< 1%)
Geometry Relaxation - after

Sensitivity of geometry to DFT functional is small

Suggests it is mostly an electrostatic effect so DFT geometries should remain accurate in QMC.
Variation in previous DFT seems to be due to inconsistent formalism.

DFT results for different functionals and psps all agree to 0.1 eV.
Full results at $T = 1400$K

<table>
<thead>
<tr>
<th>Species</th>
<th>$q=0$</th>
<th>$q=1$</th>
<th>$q=2$</th>
<th>$q=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>V^q_O</td>
<td>6.99</td>
<td>4.03$+\epsilon_F$</td>
<td>1.81$+2\epsilon_F$</td>
<td></td>
</tr>
<tr>
<td>V^{-q}_{Al}</td>
<td>6.71</td>
<td>7.47$-\epsilon_F$</td>
<td>8.84$-2\epsilon_F$</td>
<td>11.74$-3\epsilon_F$</td>
</tr>
<tr>
<td>O^{-q}_I</td>
<td>7.47</td>
<td>9.37$-\epsilon_F$</td>
<td>13.03$-2\epsilon_F$</td>
<td></td>
</tr>
<tr>
<td>Al^q_I</td>
<td>19.96</td>
<td>13.86$+\epsilon_F$</td>
<td>8.02$+2\epsilon_F$</td>
<td>2.86$+3\epsilon_F$</td>
</tr>
<tr>
<td>V^q_{AlO}</td>
<td>3.56</td>
<td>20.37$-\epsilon_F$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AlO vacancy surprisingly stable!
Oxygen vacancies dominate at low μ_0 (i.e. more favourable for O_2 to remain gaseous). Aluminium vacancies dominate at high μ_0.

Real solid could not explore this whole range.

$T = 1400K \Rightarrow \mu_0 \simeq -435eV.$
If no bandgap correction is applied, DMC results agree well with DFT except for correcting self interaction error of localised states.
With bandgap correction, DFT appears to be significantly overbinding. Real cost to break bonds is lower.
DMC Formation Energies

![Oxygen Interstitial Formation Energies](image)

Interstitial is consistently harder to form, also suggesting DFT overbinds it.
Outlook

- Diffusion Monte Carlo shows significant differences in formation energies from DFT
- Accurate correlation very important for electronic structure around defects
- Computational demands are large but not unfeasible
- Outlook
 - Extend to more interesting oxides (e.g. TiO$_2$ - see Kilian’s talk)
 - Defect migration barriers
 - Better defect-defect interaction corrections
Diffusion Monte Carlo shows significant differences in formation energies from DFT

Accurate correlation very important for electronic structure around defects

Computational demands are large but not unfeasible

Outlook
- Extend to more interesting oxides (e.g. TiO\textsubscript{2} - see Kilian's talk)
- Defect migration barriers
- Better defect-defect interaction corrections
Perfect Crystal, full periodicity of lattice

Potential from \(n(r) \) is \(V_H(r) = \frac{4\pi}{\Omega} \sum_G \frac{n(G)}{G^2} e^{iG \cdot r} \)
Introduce defect to supercell

If we use $V_H(r) = \frac{4\pi}{\Omega} \sum_{\mathbf{G}} \frac{n(\mathbf{G})}{G^2} e^{i\mathbf{G} \cdot \mathbf{r}}$ then defects feel potential from periodic replicas of themselves (and jellium background if $q \neq 0$)
Real situation is one defect supercell embedded in array of bulklike supercells.

Difference of defect cell from perfect cell is $\Delta n(r)$.

Calculate $V_H(r)$ in real space: $V_H(r) = \int \frac{\Delta n(r')}{|r-r'|} d^3r'$
Possible Approaches

Ignore the problem and do nothing?

Commonly used - but greatly over-stabilises charged defects

Requires enormous supercells to converge ΔG_f
Use $\Delta V_{av} = V_{av}^{def} - V_{av}^{perf}$

Not on first sight intended for this purpose
Only addresses monopole correction

Works surprisingly well as it makes no assumptions about
distribution of defect charge or polarisation

Dodgy in practice as “far from the defect” is very imprecise
Different choices to average over produce different results.
Not really feasible in QMC but DFT results should be applicable
Embedded Cluster Methods

Insert cluster with defect in field of point charges representing the ions, extending to infinity

Bypasses defect interactions entirely by changing boundary conditions

Edge effects, slow convergence with cluster size

Seems unlikely to work well in QMC
Makov-Payne Corrections: Approximate defects with lattice of point charges and remove spurious energy contributions

Result is \(\Delta E_{MP} = -\frac{q^2 \alpha}{2\varepsilon L} - \frac{2\pi qQ}{3\varepsilon L^3} + O[L^{-5}] \)

Hard to evaluate \(Q \), hard to know what value of \(\varepsilon \) to use

Does not correctly account for polarisation effects

Great sometimes, very poor other times (often makes things worse).
Makov-Payne Corrections

Accuracy depends on position of defect states relative to VBM & CBM

Generally speaking, if extra charge q returns density to more bulk-like state, MP works

If approximation of pointlike defect charge is bad, MP converges less quickly than uncorrected
Correcting Just the Coulomb energy

Considering just the Hartree energy (similar arguments apply to psp terms):

\[n_{def}(r) = n_{perf}(r) + n_{loc}(r) \]

Since Poisson’s Eq is linear we can write \(E_H \) as:

\[
E_H^{def}[n] = \frac{1}{2} \int_{cell} V^\text{per}_H(r) n_{perf}(r) d^3r + \frac{1}{2} \int_{cell} V^\text{loc}_H(r) n_{loc}(r) d^3r \\
+ \int_{cell} V^\text{per}_H(r) n_{loc}(r) d^3r
\]
Correcting Just the Coulomb energy

Can write this as

$$E_H = \frac{1}{2} \sum_{\mathbf{G} \neq 0} \frac{4\pi n_{\text{per}}(\mathbf{G}) n_{\text{per}}(-\mathbf{G})}{\Omega G^2} + \frac{1}{2} \int_{\text{cell}} \int_{\text{cell}} \frac{n_{\text{loc}}(\mathbf{r}') n_{\text{loc}}(\mathbf{r}) d^3r'}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}$$

$$+ \int_{\text{cell}} \sum_{\mathbf{G} \neq 0} \frac{4\pi n_{\text{per}}(\mathbf{G}) e^{i\mathbf{G}.\mathbf{r}}}{\Omega G^2} n_{\text{loc}}(\mathbf{r})$$

So

$$\Delta E_H[n] = \frac{1}{2} \int_{\text{cell}} \int_{\text{cell}} \frac{n_{\text{loc}}(\mathbf{r}') n_{\text{loc}}(\mathbf{r}) d^3r'}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}' d^3\mathbf{r} - \frac{1}{2} \sum_{\mathbf{G} \neq 0} \frac{4\pi n_{\text{loc}}(\mathbf{G}) n_{\text{loc}}(-\mathbf{G})}{\Omega G^2}$$
Correcting the boundary conditions on the potential

Does not solve the problem - equivalent sized error in KE due to polarization. Often this scheme makes convergence slower.

However... go back a step or two - put the correct form of V_H into the SCF loop

Run as a correction to the potential *inside* SCF loop

Boundary conditions on potential are a problem, esp for defects with low symmetry

Promising!
Makov-Payne correction $\Delta E_{MP} = -\frac{q^2 \alpha}{2\epsilon L}$ seems to describe most of the behaviour if ϵ is treated as a fitting parameter.

Choose cell shapes (long and quite thin) for which $\alpha \approx 0$?

\[\text{e.g. } 4 \times 4 \times 5 \text{ has } v_M = -0.07\text{eV}, \text{ compared to } v_M = -3.9\text{eV for } 2 \times 2 \times 1 \]

Too big to be simulated with plane waves - perhaps with linear scaling?
Outline

1. Point Defects
 - Thermodynamics of Defect Formation Energies
 - Point Defects in Alumina
 - Why DMC?

2. Results
 - Geometry
 - Formation Energies
 - Outlook

3. Coulomb Interactions
 - The Problem
 - Makov-Payne
 - Better Ideas

4. Summary
Formation energies for charged defects (first for QMC)
Accuracy appears to beat DFT - but relies on DFT for geometries
Points out overbinding and self-interaction errors present in DFT calculations

Outlook
- Work out how to correct defect-defect interactions
- Extend to more interesting oxides (e.g. TiO$_2$)