QMC calculations on biexcitons in bilayer systems

Robert Lee
Outline

- What are excitons and biexcitons?
- Why are they interesting?
- Experimental setup / the bilayer system
- QMC calculations
- Conclusions
Excitons are bound electron-hole pairs, formed in semiconductors when an electron is excited into the conduction band and interacts with a hole (the absence of an electron) in the valence band.

In the low density limit, \(na_B^D \ll 1 \), excitons may be treated as weakly interacting, neutral bosons. Thus BEC is predicted at low temperatures.

This will occur when the de Broglie wavelength, \(\lambda = \sqrt{2\pi \hbar^2 / M k_B T} \), is comparable to the interparticle separation, \(n^{-1/2} \).

\[
a_B^* = \frac{4\pi \varepsilon_0 \varepsilon \hbar^2}{\mu_{eh} e^2}, \\
R_y^* = \frac{\mu_{eh} e^4}{2(4\pi \varepsilon_0 \varepsilon)^2 \hbar^2}
\]

\[T_t = 2\pi \hbar^2 n / M k_B \approx 3K \quad \text{Well within experimental reach!} \]

(noting that \(M = m_e + m_h \approx M_{atom} \times 10^{-3} \))

Other experimental problems persist...
The CQW system

Robert Lee - QMC calculations on biexcitons in bilayer systems

The experimental systems are designed to inhibit recombination while still allowing significant interactions between layers.

(Left) Courtesy of Joanna Waldie (Right) Jonathan Keeling http://www.tcm.phy.cam.ac.uk/~jmjk2/
The bilayer system

- Idealized 2d layers
- Electron & hole masses are isotropic
- Two like-charge but opposite-spin particles in each layer

The Schrödinger equation for a biexciton is then:

\[
\left[-\frac{1}{1+\sigma} \left(\nabla_1^2 + \nabla_2^2 \right) - \frac{\sigma}{1+\sigma} \left(\nabla_a^2 + \nabla_b^2 \right) + \frac{2}{r_{12}} + \frac{2}{r_{ab}} - \frac{2}{r_{1a}} - \frac{2}{r_{1b}} - \frac{2}{r_{2a}} - \frac{2}{r_{2b}} \right] \Psi = E_{XX} \Psi ,
\]
The trial wavefunction

\[\Psi = \Psi_{ee} \Psi_{hh} \Psi_{eh} \]

\[\Psi_{ee} = \exp \left[\frac{c_1 r_{12}}{1 + c_2 r_{12}} \right] \]

\[\Psi_{hh} = \exp \left[\frac{c_3 r_{ab}}{1 + c_4 r_{ab}} \right] \]

\[\Psi_{eh} = \exp \left[\left(\frac{c_5 r_{1a} + c_6 r_{1a}^2}{1 + c_7 r_{1a}} \right) + \frac{c_5 r_{1b} + c_8 r_{1b}^2}{1 + c_9 r_{1b}} + \frac{c_5 r_{2a} + c_8 r_{2a}^2}{1 + c_9 r_{2a}} + \frac{c_5 r_{2b} + c_6 r_{2b}^2}{1 + c_7 r_{2b}} \right] \]

+ \exp \left[\left(\frac{c_5 r_{1a} + c_8 r_{1a}^2}{1 + c_9 r_{1a}} \right) + \frac{c_5 r_{1b} + c_6 r_{1b}^2}{1 + c_7 r_{1b}} + \frac{c_5 r_{2a} + c_6 r_{2a}^2}{1 + c_7 r_{2a}} + \frac{c_5 r_{2b} + c_8 r_{2b}^2}{1 + c_9 r_{2b}} \right] , \]

VMC - Variational estimate of the ground state energy

\[E \approx \frac{\int_0^\infty d\mathbf{R} \; \Psi(\mathbf{R}) \; \hat{H} \; \Psi^*(\mathbf{R})}{\int_0^\infty d\mathbf{R} \; |\Psi(\mathbf{R})|^2} \approx \frac{1}{M} \sum_{i=1}^M E_L(\mathbf{R}_i) \]

Minimize \(E \) w.r.t. the parameters \(c_{1-9} \)
The imaginary-time Schrödinger equation:

\[
(\hat{H} - E_T)\Phi(\mathbf{R}, \tau) = -\frac{\partial \Phi(\mathbf{R}, \tau)}{\partial \tau},
\]

Any wavefunction may be constructed from the complete set of eigenfunctions:

\[
\Phi(\mathbf{R}, \tau) = \sum_{i=0}^{\infty} c_i \phi_i(\mathbf{R}) e^{(E_T - E_i)\tau},
\]

Propagation in imaginary time can project out the ground state component. This is done in CASINO with drift-diffusion and branching dynamics. Equivalent to solving the importance-sampled SE

\[
-\frac{1}{2} \nabla^2 f(\mathbf{R}, \tau) + \nabla \cdot (V(\mathbf{R}) f(\mathbf{R}, \tau)) + (E_L(\mathbf{R}) - E_T) f(\mathbf{R}, \tau) = -\frac{\partial f(\mathbf{R}, \tau)}{\partial \tau},
\]

with \(f(\mathbf{R}, \tau) = \Phi(\mathbf{R}, \tau)\psi(\mathbf{R}) \)
Biexciton binding $2E_x - E_{xx}$
Biexciton binding \(2E_x - E_{xx}\)

Robert Lee - QMC calculations on biexcitons in bilayer systems
Biexciton binding $2E_x - E_{xx}$

Robert Lee - QMC calculations on biexcitons in bilayer systems
Biexciton stability

Robert Lee - QMC calculations on biexcitons in bilayer systems

No biexciton formation possible

$d (a_B^{*})$

Biexciton formation

Mass ratio σ
Constrain the centre-of-mass positions of two excitons. Then each exciton may be treated mathematically as a single particle. The two particles interact by the potential

\[
\hat{V} = -\frac{1}{|r_1|} - \frac{1}{|r_2|} + \frac{1}{|R_{cm} + \frac{m_\mu}{m_e}(-r_2 + r_1)|} + \frac{1}{|R_{cm} + \frac{m_\mu}{m_h}(-r_1 + r_2)|} - \frac{1}{|R_{cm} - \frac{m_\mu}{m_h}r_1 - \frac{m_\mu}{m_e}r_2|} - \frac{1}{|R_{cm} + \frac{m_\mu}{m_e}r_1 + \frac{m_\mu}{m_h}r_2|},
\]

and have kinetic energy

\[
\hat{T} = \frac{1}{2m_\mu} \left(\nabla_1^2 + \nabla_2^2 \right),
\]

So we can now treat R_{cm} as a parameter and investigate the exciton-exciton potential with $\sigma \neq 0$.
VMC versus DMC

Robert Lee - QMC calculations on biexcitons in bilayer systems

Interaction potential (R_y^*) vs. Hole-hole separation (a_B^*)

$d = 0.9a_B^*$
VMC versus DMC

Robert Lee - QMC calculations on biexcitons in bilayer systems

\[d = 0.9a_B^* \]
Pair dist. functions

Electron-hole PDF

\[g_{\text{eh}}(r) = \frac{1}{8\pi r} \left\langle \sum_{\sigma_e, \sigma_h \in \{\uparrow, \downarrow\}} \delta(|r_{e\sigma_e} - r_{h\sigma_h}| - r) \right\rangle , \]

Electron-electron PDF

\[g_{\text{ee}}(r) = \frac{1}{2\pi r} \left\langle \delta(|r_{e\uparrow} - r_{e\downarrow}| - r) \right\rangle , \]

Extrapolated estimator

\[g^{\text{ext}} = 2g^{\text{DMC}} - g^{\text{VMC}} \]

Normalization

\[\int_0^\infty 2\pi r g^{\text{ext}}(r) \, dr = 1. \]
Pair dist. functions

Robert Lee - QMC calculations on biexcitons in bilayer systems

\[2g_{\text{ext}}^\text{single} (r) - g_{\text{eh}} (r) \]

- \(d = 0.20a_B^* \) (black solid line)
- \(d = 0.24a_B^* \) (red dashed line)
- \(d = 0.28a_B^* \) (green dotted line)

\(r \) (\(a_B^* \))

0 1 2 3 4 5 6
Summary

- Calculated accurate binding energies and the region of biexciton stability.
- Looked at the exciton-exciton interaction for a range of system parameters.
- Observed the size of a bound biexciton using pair distribution functions.
Acknowledgments

Richard Needs, Neil Drummond
Joanna Waldie, Jonathan Keeling, Christoph Schindler
EPSRC
Cambridge HPC