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Abstract. We assess the viability of non-self-consistent total energy calculations
using the Harris-Foulkes energy functional. The self-consistent electron density in
11 ahuninium structures is resolved into components that are qualitatively similar
to the free pseudo-atomic density. For many of the structures the components dis-
play significant anisotropies, whilst between the structures there are also important
differences. By studying the sensitivity of the Harris-Foulkes energy functional to
perturbations in the input eleciron density, we are able to relate these differences in
atomic-like densities to differences in energy, We condude that no estimate for the
electron density based on the superposition of spherical densities can be expected to
give errors in the energy of less than 0.03 eV per atom. Given the significant vari-
ation in atomic-like electron densities from structure to structure, any transferable
density scheme is also prone to energy errors. By constructing a least-squares fit of
our electron density data to a given functional form, we conclude that the errors in
the absolute energies per atom are typically of the order of 0,05 eV whilst for energy
differences they drop to 0.01 eV.

1. Introduction

The development of ever more efficient algorithms and access to ever more powerful
computers has allowed the ab-initio simulation of progressively larger and more com-
plicated condensed matter systems [1]. In spite of this progress there are still many
situations in which an ab-initio approach is not feasible. The calculation of total ener-
gies and hence the simulation of such systems is only possible by the use of empirical
and semi-empirical schemes [2-7).

Nowadays most ab-initio total energy calculations are carried out within the den-
sity functional formalism [8], using a local approximation to the exchange-correlation
energy. As the name suggests, within this formalism, it is the electron density which
plays a central role. For a given input density, a Hamiltonian is constructed. Qutput
eigenvalues, wavefunctions and electron densities are calculated. Anr estimate for the
energy 1s then given by the Kohn-Sham functional, which is a sum of the occupied
eigenvalues and a number of terms dependent on both the input and output electron
density. Better results may be obtained using the output density as the input for the
next cycle and iterating towards convergence. For the correct input electron density
the functional is stationary, a local minimum, and gives the correct energy of the sys-
tem. For this same density the input and output densities are equal, and are said to
be self-consistent. If the energy is evaluated near but not at the self-consistent elec-
tron density then only second-order errors in the energy will result. However, given
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the high degree of reliability of the other aspects of these calculations, one generally
jterates very near to the true ground state density. For this reason these calculations
are generally self-consistent.

Electron density is equally important in many empirical and semi-empirical
schemes. In the embedded atom method [4], the effective medium method [2] and
the glue model {3], the energy of a given atom is determined by the eleciron density
it feels from its neighbours. In the many-atom bond order potential model [5], the
strength of a bond is determined by its environment which, in turn, is determined by
the electron densities of its neighbours. Foulkes and Haydock {9] have shown that even
in the semi-empirical tight-binding model [7], the form of the energy may be derived
from suitable assumptions about the nature of the electron density.

Although central to all schemes, the treatment of the electron density does of
course differ significantly between self-consistent schemes, and the other methods. In
the former, the electron density used to evaulate the energy is essentially correct and
of no pre-supposed form. In the latter the electron density used is not exact and
is constrained to be comprised of atomic-like, spherical electron densities centred on
the nuclei which make up the system. The relative success of empirical and semi-
empirical schemes suggests that this assumed form of the electron density may in fact
be reasonable.

Motivated by this observation and using an alternative energy functional, firstly
Harris [10] and then, independently, Foulkes and Haydock [9] have proposed a new
method for non-self-consistent total energy calculation. The self-consistent electron
density is approximated by superposition of atomic-like densities. A corresponding
electronic potential and Hamiltonian are generated. Occupied eigenvalues of the
Hamiltonian are found and summed over, and various other energy terms depend-
ing only on the explicit input electron density are calculated. All the terms are added
together to give an estimate of the total energy which depends only on the input
electron density. The output electron density is never calcualed.

The ideas of Harris, Foulkes and Haydock have been investigated by Read and
Needs [11] and by Finnis {12]. Read and Needs have studied the performance of the
Harris-Foulkes functional for bulk and for surfaces of silicon and aluminium using a
superposition of pseudo-atomic densities. They have found that for bulk structures
the functional does well. However, for surfaces, the functional performs less well.
Finnis has performed similar calculations, and obtained similar results. It had been
postulated that the Harris-Foulkes functional displayed a local maximum around the
self-consistent density. On the basis of this, Finnis tried to optimize the atomic-
like densities he superimposed, so as to maximize the value of the Harris-Foulkes
functional. It is now known [13] that the functional is in fact either a local minimum
or a saddle-point, and hence this procedure must be considered invalid.

The main aim of this paper is to attain an understanding of the nature of the self-
consistent electron density in a wide range of aluminium structures. We wish to un-
derstand the extent to which it may be considered to be a superposition of atomic-like
densities, to what extent these densities are spherically symmetric, their relationship
to the true pseudo-atomic density and the extent to which they are transferable from
structure to structure.

The purpose of our work is threefold. Firstly we wish to understand the magnitude
of self-consistency effects. In this way we may appreciate the limitations of those
empirical and semi-empirical schemes which ignore [3-6] or approximate them [2].
Secondly we wish to explore the possibility of performing accurate non-self-consistent
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total energy calculations. That is, can we, for any structure, write down a priori a
good approximation to the self-consistent electron density, avoiding the need for time-
consuming iterations to self-consistency? Finally, in obtaining transferable atomic-like
densities we would have the ingredients for a quick, approximate, but non-empirical
total energy scheme.

The outline of the paper is as follows. In section 2 we calculate the self-consistent
charge density of a number of aluminium structures. We explore the possibility of
resolving these charge densities into localized components. We study the differences
between these localized distributions and the true pseudo-atomic electron density. In
section 3 we study the sensitivity of the Harris-Foulkes energy functional to errors in
the input charge density. In section 4 we use the results of sections 2 and 3 to deduce
some bounds on the reliability of any non-self-consistent schemes. We conclude in
section 5 with a summary of our results and the direction of our future work.

2. The self-consistent charge density

2.1. Computational details

The first step of our work is to choose those aluminium structures that we wish to
study. Since one of our motives for this study is as part of an on-going investigation
of many-atom bonding in metals, it is natural that we use those structures which we
have already studied in an alternative context [14]. Al of these structures are periodic.
Details of the unit cells, whose axes are mutually orthogonal, are given in table 1. All
these structures have an atomic nearest neighbour separation of 2.85 A but differ in
coordination number, with values ranging from 0 for our atomic structure to 12 for
the FCC structure.

For each structure we generate the self-consistent electron density. We use a Car-
Parrinello algorithm [15}, expanding the wavefunctions in a plane wave basis with a
cut-off energy of 190 eV. To represent the ions we use a local pseudopotential of the
Heine-Abarenkov type [16,17] and for exchange-correlation we use the function of
Ceperley and Alder [18] as parametrized by Perdew and Zunger [19]. Many of our
structures are metallic, which implies a need for a large number of k-points. In order
to achieve this cheaply, we use the k- p method [20], and solve over an 8 x 8 x §
Monkhorst-Pack grid of k-points [21].

2.2. Resolution into atomic-like components

Consider a periodic system of N identical atoms whose nuclei are at positions R,.
By identical we mean not only that the atomic species are identical, but also tha.t.
the environment of each atom is identical. We may formally write the self-consistent
charge density p(r) of this system as a superposition of identical components. In
anticipation of the form of these components, we will refer to them as atomic-like
components of ALDs, and represent them by the sympol PALD:

p(r) = ZPALD(" - R;). (1)

Taking the Fourier transform of (1) we have for each reciprocal lattice vector of our
system

AG) = pap(G)S(G)V @



8354 I J Robertson et al

Table 1. Lattice parameters and atomic coordinates for the 11 aluminium structures.

Structure a (A) b(A) c(A) Atomic coordinates

Fcc 4.0305  4.0305  4.0305  (0.00,0.00,0.00)
(0.50,0.50, 0.00)
(0.50,0.00,0.50)
(0.50,0.50, 0.50)

Vacancy lattice 40305 4.0305 4.0305  (0.50,0.50,0.00)
{0.50,0.00,0.50)
{0.50,0.50,0.50)
Simple cubic 2.8500 2.8500 2.8500 {0.00,0.00,0.00)
Diamond 6.5817 4.6540 4.6540 (0.00, 0.00, 0.00)
(0.2, 0.50,0.00)

(0.50,0.50,0.50)
{0.75,0.00,0.50)

Atom 5.7000 5.7000 5.7000 (D03, 0.00, 0.00)
Line 2.8500 5.7000 5.7000 {0.00, 0.00,0.00)
Square lattice 2.8500 2.8500 5.7000 (0.00, 0.00, 0.0C)

Close-padked layer  2.8500 4.9363  5.7000 (0.00, 0.00, 0.00)
(0.50, 0.50, 0.50)

Square slab 8.5500 2.8500 2.8500 _ {0.00,0.00,0.00)
(0.33,0.00,0.00)
FCC slab 7.3471 4.0305 4.0305 {0.00,0.00, 0.00)

{0.27,0.50,0.00)
(0.27,0.00,0.50)

{0.00,0.50,0.50)

Graphite 5.7000 8.5500  4.98363 _. {0.00,0.00,0.00)
(0.00,0.33,0.00)

{0.00,0.50, 0.50)

(0.00, 0.83,0.50)

where S(G) is the structure factor and V is the volume of the unit cell. For those
values of G for which S(G) is not zero, we then have

PaLp(G) = p(G)V/S(G). (3)

At first glance, the information furnished by equation (3) regarding the ALD for this
structure is rather restricted. In particular, it is limited to that finite number of
reciprocal lattice vectors, G, consistent with the periodicity of the structure, and for
which §(G) is not zero. This is not a problem. One may always consider a structure as
being comprised of large supercells whose dimensions are multiples of the dimensions
of the original unit cell. The values of G consistent with this new cell will then be more
densely distributed in reciprocal space. However, the structure factor corresponding to
those new values of G will necessarily be zero and equation (3) cannot be employed.
To overcome this problem we displace the atoms of our supercell by a very small
amount. Given that the environment of each atom has been barely modified we may
still assume that all atoms are equal. (The validity of this assumption is addressed in
section 2.5.) The function p,y (&) is unmodified, but may now be sampled at many
more points.

For some of our structure the atoms do not have identical environments, and the
previous approach needs some modification. For the graphite structure, there are two
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distinct types of atomic environment which we may denote A and B. However, all
atoms are equally disposed with respect to the r axis and so for any reciprocal lattice
vector G, in the z direction we may rigorously write

PaLp(G,) = paLn(G.). 4)

Solution of equation (3) now proceeds as before.

For both the FCC slab and the square slab, we have atoms which, although inequiv-
alent with respect to the r axis, are equivalent with respect to y and 2 For reciprocal
lattice vectors in the yz plane we may therefore proceed as above. For reciprocal lat-
tice vectors in the r direction we proceed as follows. Consider first the square slab:
Denoting the atom on the lower layer (with z coordinate 0.0) as A and that on the
upper layer as B we have, for some G,

iRE.
PGV = phip(G,) + phLp(Gy )™ . (5)

If we now slightly raise the upper atom to new position RE,, whilst retaining the
dimensions of our supercell and iterate to charge self-consistency, we will generate a
new value p'(G,) for the same G_ component of the charge density. If the displacement
is very small then we may assume that the ALDs of atoms A and B are unchanged,
and hence

-
p'(Gz:)T'/ = ngD(Gz') + pELD(Gz' )elR“w G= - (6)

Equations (5) and {6) may be solved simultaneoulsy to yield the required ALD data.
Data for the FCC slab and for the diamond structure are obtained by the same proce-
dure.

Having discussed at length our inversion procedure, we turn to its results.

2.8. Free atom

The crosses on Figure 1 show the result of our inversion procedure for the self-
consistent charge density of our fres-atomic structure. Although data is only available
at those values of (& corresponding to reciprocal lattice vectors of the system, the
smoothness of the plot indicates that data at intermediate points could be found by
interpolation. In order to facilitate this interpolation, we have sought to find a good
analytical fit for the data. Guided by the form of the pseudopotential we have tried
the form,

c 3k
parlO) = Ry DT Y

Acos(GR) + G~ sin(GR)]e~#¢" (7

with R =0.725 A, A = 0.416, £ = 1.75 A~ and 3 = 0.022 A? we find an excellent fit
shown as the bold line on figure 1.

The magnitude of p,p(G) is fairly negligible for all G > 3 A1 Therefore only a
very small range of G corresponds to appreciable charge density. The importance of
this will become apparent later.
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Figure 1, The electron density of a free aluminium pseudo-atom in reciprocal space
as a function of wave nwmber (+4) and analytic fit to these data (full curve).

2.4{. Bulk struclures

Four of our 11 structures in table 1 may be described as bulk structures. They are the
Face-cenired cubic, the vacancy lattice, the simple cubic and the diamond structures.
For these structures, and for the unit cells given in table 1, the smallest reciprocal
lattice vectors with non-vanishing structure factors are relatively large. The informa-
tion that could be obtained regarding the ALDs of these structures would therefore be
limited to relatively small wavelengths. To overcome this problem we have adopted
the procedure outlined in section 2.2. We use the modified supercells of table 2. For
three of the structures this involves the construction of large supercells, for the dia-
mond strocture it involves distortion of atoms within the same unit cell and solution
by the method of equations (5) and (6).

The results of this procedure are plotted in figure 2. For the diamond structure the
A and B atoms are almost equivalent and their average has been plotted. In order to
facilitate comparison we have also plotted the fitted atomic data of equation (7). The
first thing to notice about these points, is that they lie reasonably close to the curve
representing the pseudo-atomic data. That is, for this wide range of bulk structures,
the self-consistent electron density is at least approximately representable by a simple
superposition of identical components, and that these components are very similar to
the pseudo-atom density.

On closer inspection we note that for each of these structures, the value of the ALD
at low G lies above that of the pseudo-atom data. The curvature of p(G) at low G
is proportional to the second moment of the real space charge density. We therefore
conclude that for these structures, the real space ALDs are contracted relative to that
of the pseudo-atom. This result is in agreement with previous work [12], and is also
predicted by the effective medium theory [2].
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Table 2. Lattice parameters and atomic coordinates for the four distorted aluminiurn

structures.
Structure a (A) & (R} ¢ {R) Atomic coordinates
Distorted FCG 8.0610 4.0305 4.0305 {¢.00, 0.00,0.00)

(0.24,0.50,0.00)
{0.24,0.00,0.50)
{0.00,0.50,0.50)
{0.50,0.00,0.00)
{0.76,0.50,0.00)
{0.76,0.00,0.50)
(0.50, 0.50,0.50)

Distorted vacancy lattios 8.0610 4.0305 4.0305 (0.24,0.50,0.00)
(0.24, 0.00,0.50)
(0.00,0.50,0.50)
(0.76,0.50.0.00)
{0.76,0.00,0.50)
{0.50,0.50,0.50)

Distorted diamond 2.8500 2.8500 2.8500 (0.00,0.00,0.00}

Diamond 6.5817 4.6540 4.6540 {0.00, 0.00,0.00)
{0.24,0.51,0.00)
(0.51,0.51,0.51)
{0.76,0.00,0.51)

Distorted diamond II 6.5817 4.6540 4,6540 (0.000,0.000,0.0(1'))
{0.240,0.508, 0.000)
(0.505,0.505, 0.505)
(0.760, 0.000, 0.508]

Distorted simple cubic 11.4000  2.8500  2.8500  (0.00,0.00,0.00)
(0.24,0.00,0.00)
(0.50,0.00,0.00)
(0.76,0,00,0.00)

A nurmber of values of G are commeon to more than one of our structurs. At these
values of G we may directly compare the ALDs for the different structures. Differences
of 0.1 electron are typical, with differences of up to 0.2 electron occurring for certain
values of G. The differences between the ALDs of the different structures appear to
follow no apparent pattern.

For some structures we have symmetrically unrelated reciprocal lattice vectors
which have the same value of G. Comparison of the data for these points allows
assessment of the degree of anisotorpy in the ALD. The spreads in this case are no
smaller than those between different structures. Differences of around 0.1 electron are
still typical.

In conclusion, the ALDs for these structures qualitatively resembles the pseudo-
atomic density. For each structure there are important anisotropies, whilst the varia-
tions between different structures are significant and follow no apparent pattern.

2.5. Surfaces

The atoms in a bulk structure are characterized by a relatively isotropic environment.
We now turn to structures in which the atomic environment is strongly anisotropic.
In the previous section we found that for bulk structures, the self-consistent density
at least qualitatively resembled a superposition of psendo-atomic densities. How must
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Figure 2. The atomiclike densities in reciprocal space for four aluminium bulk
structures. Face-centred cubic (+), Vacancy lattice (x), diamond () and simple
cubic {4). Full curve shows a fitted form to the electron density of a free alwminium
pseudo-atom,

this picture be modified for surfaces?

In order to investigate this, we have taken the remaining six structures of ta-
ble 1. Five of them are surface-like, the remaining one linear. We have resolved the
corresponding self-consistent densities into atom-like components. For three of these
structures, all the constituent atoms are equivalent and the procedure is trivial. For
one of them, graphite, all the atoms are equivalent with respect to the r axis, We use
equation (4) to obtain p,; (G, ) and ignore all G lying in the yz plane.

For the FCC slab and the square slab, all atoms are equivalent for reciprocal lattice
vectors lying within the planes of atoms, so for & in these directions we use equa-
tion (4). To obtain data for values of G perpendicular to the surface, we slightly
distort our upper layer of atoms, and solve using equations (5) and (6). The results of
this procedure are displayed in tables 3 and 4. The significant imaginary part of the
electron density is due to the abence of inversion symmetry in the atomic environment.

Table 3. The atomic-like densities of A and B atoms as a function of G for the
square sfab.

GA)  phyp(G) #BLp(G)

0.735 2,394 4+ 0.034i 2.394 — 0.034i
1470 1.384 4 0.067i 1.384 — 0.0671
2.204 0.420 + 0.103i 0.420 + 0.103i
2,940 -0.007 - 0.045] —0.007 4 0.0451
3.674 -0.062 - 0.0451 -0.062 + 0.0451
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Table 4. The atomic-like densities of A and B atoms as a function of G'y for the
Foc slab.

G(A)  Phup(G) PaLp(G)

0.855 2.159 + 0.068i 2.159 — 0.068i
1.710 0.954 + 0.011F  0.954 — 0.015i
2.566 0.189 +-0.047i  0.192 — 0.045i
3.421 —0.098 4+ 0.0011 -0.099 - 0.001;

In order to test the validity of our assumption that our small displacements of the
ions around does not significantly affect the atomic-like densities, we have calculated
PaLp(G,) and pB; (G,) for the square slab using a less distorted structure than that
in table 2. The values obtained agree with those in table 3 to within 0.01 electrons
demonstrating the validity of the assumption and the reliability of our results.

The results for the six structures are shown in figure 3. For the two-slab structures
we have plotted the real part of the electron density. Given the relative magnitude of
the real and imaginary parts, the neglect of the imaginary part is reasonable. Again
the points lie around the line representing the pseudo-atomic data. In spite of the
strongly inhomogeneous environment of atoms in these structures, it is still possible
to represent approximately these self-consistent electron densities as a superoposition
of atomic-like densities.
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Figure 3. The atomic-like densities in reciprocal space for six aluminium structures.
Face-centred cubic slab (%}, square slab (D), graphite layer {*), close-packed layer
(®), square layer (+) and line {(a). Full curve shows a fitted form to the electron
density of a free aluminium pseudo-atom.

The data points at low values of G lie somewhat above the pseudo-atomic curve
although not as much as was the case for the bulk structures, Again the real space
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ALDs for these structures are somewhat contracted relative to that of the free pseudo-
atom. We attribute the smaller contraction to the fact that a free-atomic environment
resembles much more closely that of an atom at a surface than an atom in bulk.

The spread in the values of the ALDs for those values of G shared by more than one
structure is larger than that for bulk structures. The degree of anistropy displayed in
the ALDs is also larger, hardly surprising given the greater anisotropy of the structures
concerned.

3. The form of the Harris energy surface

3.1. Introduction

In the previous section we established that the self-consistent densities of a wide range
of structures can be resolved into atomic-like components which are broadly isotropic
and not too different from the electron density of the free pseudo-atom. However,
some anisotropies were present, as were deviations in these ALDs from structure to
structure. To model all of these densities using a simple spherical density would
therefore necessarily introduce certain errors in the electron density. Given that one
of our aims is to assess the feasibility of non-self-consistent total energy calculation,
it is necessary to determine how these errors in the electron density would translate
into errors in total energy. This is the purpose of this section.

3.2. Some properiies of the Harris-Foulkes functional

The Harris energy functional introduced separately by Harris and Foulkes [9,10] is
defined as

H= zgiwi - EH{nin(r)] + Exc[nin(r)] - fdar Fxc[nin(r)]nin(r) + Enn (8)

where Ey is the Hartree energy, E,. is the exchange-correlation energy, £, is the
nuclear-nuclear interaction, g, is the exchange correlation potential, &; is the ith
eigenvalue and w; is the corresponding occupation probability.

At the self-consistent electron density, the Harris~Foulkes functional is stationary
and gives the correct ground state energy. For input densities sufficiently close to the
correct density, errors in the energy are second-order with respect to the errors in the
electron density. For some time it was thought that at the correct electron density the
functional was a local maximum. It is now known that this is not true [13] and that
within the local density approximation the functional is in fact either a saddle-point
or a local minimum.

For the special case of nearly uniform systems, rather more about the functional is
known [13]. A critical value of G, namely G, which is related to the average electron
density of the system, may be calculated. For errors in the charge density in Fourier
components with G < (G, the functional shows large negative errors. For errors in the
charge density in Fourier components such that G > G the functional shows errors
which are positive and somewhat smaller. Errors in different Fourier components of
the electron density produce errors in the energy which are additive. That is, the
errer in the energy produced by the perturbation of two distinct Fourier components
is equal to the sum of the errors induced by performing the perturbations separately.
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Most of our structures are rather non-uniform, and it would be unwise simply
to apply these results for nearly-uniform systems. We therefore want to study the
shape of the Harris functional around the self-consistent density for our 11 structures.
Unfortunately, for those structures whose supercells contain large amounts of vacuum
many perturbations lead to regions of space with negative electron density. Even those
perturbations which do not, can produce rather anomalous behaviour in the Harris-
Foulkes functional [22]. For this reason we have restricted our survey to the four bulk
structures. Our method is as follows.

For each structure we take the self-consistent electron density. We select a star of
Fourier components and perturb each by an amount equal to one electron divided by
the square root of the multiplicity of that star. We thereby ensure that the pertur-
bation is properly norrnalized. This new density is then used to evaluate the Harris—
Foulkes energy functional. The procedure is repeated for a number of stars.

Our results are displayed in table 5 and in figure 4. The first thing that to notice
is that the form of the results for the different structures are rather similar. That
is, in each case we can identify a critical value of G. marking the boundary between
those perturbations which produce negative errors in the energy and those which
produce positive errors. Assuming uniformity and ignoring electron correlation, we
may calculate G_ as '

G = Anll? 9)

where A = 6.19 and the electron density n is measured in electrons per cubic angstrom.
‘For each structure we have evaluated G_. We find for the FCC, the vacancy lattice,
the simple cubic and the diamond structures the values of G are equal to 3.52 A-1

3.20 A-1, 3.13 A~! and 2.71 A~! respectivley. Inspection ‘of table 5 reveals these
values to be in reasonable agreement with our results. They are in each case a little
on the high side, reflecting the inhomogeneity of the true electron density and the 1/3
power in equation {9). For each structure, for values of G greater than G, the error
in the energy is small and saturates. However, for values of G less than G the errors
in the energy are large and diverge as 1/G*.

The relevance of these results for the implementation of non-self-consistent calcula-
tions are clear. The Harris-Foulkes functional is not equally sensitive to perturbations
of equal magnitude in the electron density. Errors in the electron density at high wave-
lengths can produce errors which are far greater than perturbations of equal strength
at low wavelengths. In constructing an estimate for the self-consistent electron den-
sity, it is therefore crucial that the low Fourier components are correct. Some errors in
the higher Fourier components are acceptable. It is also clear, that non-self-consistent
calculations are far less likely to succeed for systems which possess a large number of
small reciprocal lattice vectors with non-zero structure factor.

4. The viability of spherical transferable densities

In section 2 we saw the extent to which the atom-like electron densities which make
up the sel-consistent densities differed from the pseudo-atomic density. In section 3
we saw the effect which an error in a single star of Fourier components of the charge
density has on the energy as calculated by the Harris-Foulkes functional. On the basis
of the results of these two sections, we are now in a position to consider the viability of
an a priori estimate of the electron density based on the superposition of atomic-like
densities.
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‘Table 5. The sensitivity of the Harris energy functional to peturbations in the elec-
tron density. Errors in the energy are displayed as a function of the magnitude of the
Fourier component being perturbed. Perturbation is fixed in magnitude throughout.

G (A™1)  errorin energy (eV)

FCC 1.56 -0.991
2.21 —0.209
2.70 —0.044
3.12 =0.010
3.47 0,029
3.82 0.040
4.41 0.050
4.68 0.069
4,93 0.073
5.17 0.084
Vacancy lattice  1.56 -0.659
2.21 —-0.130
2.70 —0.008
312 0.036
3.47 0.089
3.82 0.096
4.41 0.090
4.68 0.134
4.93 0.163
517 0.143
Simple cuble 0.55 -36.961
1.10 -3.456
1.65 -0.615
2.21 -0.083
2.76 0.001
3.31 0.033
Diamond 0.95 -2.386
1.36 -0.614
1.66 —0.076
1.91 -0.058
2.14 -0.012
2.33 0.015
2,70 0.133
2.86 0.053
3.30 0.073
4,67 0.097

4.1. Sphericity

To what extent is it possible to reproduce any self-consistent density by the super-
position of spherical densities? Of our 11 structures, only the atomic structure has
atoms which are truly spherical. The other structures are all to a lesser or grater
extent non-isotropic. In section 2 it was noted that this anisotropy led to variations
in ppp(G) for a given structure and for a given G of up to 0.4 electrons. To rep-
resent payp(G) by a spherically symmetric function would therefore introduce errors
in payp(G) of up to 0.2 electrons. In calculating the electron density for the whole
system one would sum this error over all components of a star and over all atoms of a
unit cell. From what we have learnt in section 3 we would expect the corresponding
error in the energy to be fairly significant. In order to find its magnitude, we have
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Figure 4. Sensitivity of the Harris functional to peturbations in the electron density.
Errors in the energy are shown as a function of the magnitude of the Fourier compo-
nent being perturbed. In each case the magnitude of the perturbation is fixed. Data
is shown, for the four bulk structures. Face-centred cubic (A}, Vacancy lattice {+},
diamond (x) and simple cubic (0). Full curve shows a fitted form to the electron
density of a free aluminium pseudo-atom.

adopted the following procedure.

For each of our structures in turn, we take the self-consistent density and by
the procedure of 2.2 resolve it into atom-like components. We take these ALDs and
‘sphericize’ them. That is, for each value of G for which we have differing values of
PaLn{G), we take the average. We now take this sphericized density and use it as
an input density to calculate the energy of the structure from which it was derived.
The results of this procedure together with the correct self-consistent energies, are
displayed in table 6.

For many of our structures the energy difference is small, due in part to the near-
sphericity of the constituent atomic environment. However, an equally important
reason is undoubtedly that for our structures, very few reciprocal lattice vectors not
related by symmetry possess the same magnitude. We note that if the z and y dimen-
sions of the linear structure had not been precisely in the ratio 2:1, then the energy
difference in sphericizing would have been significatnly reduced.

Allowing for this, the energy differences for the linear, diamond and square struc-
ture of 0.03 eV, 0.01 eV and 0.01 eV respectively should not be regarded as anomalous.
It is possible that the positive and negative errors which arose due to the neglect of
anisotropy cancel. However it would be dangerous to rely on such a cancellation, and
we conclude that an energy error of around 0.02 eV per atom is an upper bound on
the reliability of any method which relies on the superposition of spherical densities.



8364 I J Robertson et al

Table 8. Effect of charge anisotropy on energies of the 11 structures. Column 1
shows correct electron density. Column 2 shows result of using ‘sphericized’ electron

density.

Energy per atom
Structure Eg (V) E; (eV)
FCC —~b5&.287 -58.287
Vacancy lattice —58.07T2 -58.072
Simple cubic —57.885 - 57.885
Diamond -57.37 —57.359
Atom —54.909 —54,909
Line —56.238 -56.203
Square lattice —57.255 —57.247
Close-packed layer ~—57.453 —57.452
Square slab —57.590 —-57.592
Fcc slab —-37.817 ~57.817
Graphite —56.883 —56.882

4.2. Transferability

The previous section has shown that the restriction of spherical ALDs is likely to result
in errors in the total energies of up to 0.03 eV per atom. To the extent that the ALDs
in some of the structures are more spherical than in others, it should be already clear
that there is no universal ALD that will describe adequately all structures. However
we should also like to know what additional differences there are between the atom-
like densities which make up the different structures. That is, how do the spherically
averaged atom-like densities differ from structure to structure, and is it possible to
introduce a universal spherically symmetric density which yields errors in the energy
no greater than those of the previous section.

In order to investigate this, we have taken the fitted pseudo-atomic charge density
of equation (7) and have used it as the input density to calculate the energy of our 11
structures. Our results are shown in the first column of table 7. The errors range from
0.003 to 0.253 eV per atom, being smallest for the bulk and largest for the surface
structures. From considerations in sections 2 and 3 we tentatively attribute this to
three factors. Firstly there is the greater sensitivity of the Harris functional to errors
in the electron density at low G, secondly there are errors in the electron densities
which are generally larger for smaller G and lastly the bulk structures have fewer
reciprocal lattice vectors at small G.

In order to support this interpretation, we adopt the following procedure. The
self-consistent charge density of each structure is taken in turn. For each reciprocal
lattice vector G > 3 A~1 we then replace the self-consistent charge by that given by
equation (7) i.e. the corresponding value of equation (7) multiplied by the structure
factor for that value of G. This new charge density is now used to calculate an
estimate for the energy of the structure. The results of this procedure are displayed in
the second column of table 7. We now repeat the procedure but this time perturb only
those components such that G < 3 A~!. The results of this procedure are displayed
in the final column of table 7. Comparison of the columns of table 7 separate out the
effect on the energy of those errors in low Fourier components and those errors in high
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Fourier components. As expected, those errors in the low Fourier components produce
large negative errors in energy, whilst those at high G tend to produce a positive and
somewhat smaller error.

Table 7. Viability of transferrable atomic-like density. Column 1 shows energies
of the 11 structures using the pseudo-atomic ensity.” Column 2: as above but using
pseudo-atomic density only for those Fourier components with G < 3 A. Column 3:
as above but only using pseudo-atomic density for those Fourier components with

G>3A
Energy per atom

Structure Ey (eV) E; (eV) Ep (eV)
FCC ~58.303  —58.285  —58.298
Vacancy lattice —58.118 -58.062 -58.116
Simple cubic —-57.880 —-57.871 —57.887
Diamond —57.368 —57.339 —-57.362
Atom —54.899 -54.903 —54.904
Line —56.381 —56.212  —56.360
Square lattice ~57.410 —-57.241 —57.405
Close-padked layer —56.626 -57.432 =57.620
Square slab =57.709 ~57.568 ~5§7.707
Fcc slab =58.070 -57.809 -58.067
Graphite -57.048 —~56.840 -57.008

We conclude that smaller errors in the bulk calculations are purely an artifact of
the small number of low reciprocal lattice vectors that these structures posses. They
are in no way an indication that the atom-like charges in bulk structures particularly
resemble that of the free pseudo-atom.

The errors in the energy in table 7 are rather large. Inspection of figures 2 and 3
suggests that these errors could be reduced by using an electron density similar to
that of equation (7) but somewhat dilated in reciprocal space. In order to find such a
density we have taken the low G data of figures 2 and 3 and again using the functional
form of 7 performed a least-squares fit. We find new values R = 0.725 A, A =0.316,
£ =191A"! and 8 = 0.012 A2. The new fit is shown in figure 5. We take this new
density and use it to calculate the energy of 11 structures, with the results shown in
table 8. Although the error for some of the structures has been increased (particularly
that for the atom), the overall agreement is better. The errors for the surfaces are
reduced by around 75% and the maximum error is reduced from 0.253 eV to 0.079 eV
per atom. All of the energy errors are negative and of similar magnitude. As a
consequence the energy differences between structures other than the atomic, show
errors of around (.01 eV per atom, with the smallest being 0.01 eV and the largest
0.054 eV.

5. Conclusion

We have shown that it is at least qualitatively reasonable to consider the self-consistent
charge density of a large number of structures to be composed of the superposition of
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Table 8. Energy of the 11 structures using optimized atomic-like electron density.

Energy using modified
atomic density

Structure (¢V per atom}
FCC —58.339
Vacancy lattice -58.121
Simple cubic —57.932
Diamond —57.396
Atom ~55.001
Line - 56.267
Square lattice =57.314
Close-padked layer —57.506
Square slab -57.652
FcC slab —-57.896
Graphite —56.933
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Figure 5. The atomic-like densities in reciprocal space for six aluminium structures,
Face-centred cubic slab (), square slab (O}, graphite layer (), close-packed layer
{®), square layer (+) and line (4}). Full curve shows least-squares fit to the data at
low G.

atorn-like entities. These entities are very similar to the true pseudo-atomic density
but slightly dilated in reciprocal space, i.e. contracted in real space.

Anisotopy in the local environment generates significant anisotropy in the electron
density. Consequently, any estimate of the electron density based on the superposition
of spherical entities is likely to yield errors of arcund 0.02 eV per atom.
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Use of the pseudo-atomic density in the 10 structures besides the free atom, yields
errors in the energy of up to —0.253 eV per atom. The errors are principally due
to a negative contribution from errors in the low Fourier components of the electron
density. For our bulk structures which hve very few low reciprocal lattice vectors the
errors in energy are inevitably less, although this would not be the case for amorphous
structures.

We have found a single spherical density which correctly yields the energy of our
10 non-atomic structures to within 0.079 €V per atom. Energy differences are mostly
correct to within 0.01 eV per atom, the worst case being 0.054 eV per atom.

Since errors in an electron density can result in both positive and negative errors in
energy, it is possible for less accurate electron densities to give more accurate energies.
However this error cancellation is fortuitious, and it is not possible to rely on this
effect. We conclude that the energy errors stated here are an upper bound on the
reliability of any non-self-consistent scheme.

Acknowledgments

The authors thank the Science and Engineering Research Council for a studentship
(IJR) and for use of the CRAY XMP at the Rutherford Appleton Laboratory under
grant GR/E 91790. One of us (MCP) thanks the Royal Society for financial support.

References

[1] Godby R, Needs R J and Payne M C 1990 Phys. World 3 39
[2] Jacobsen K W, Norskov J K and Puska M J 1987 Phys. Rev. B 35 7423
[3) Ercolessi F, Parrinello M and Tosatti E 1988 Phil. Mag. A 58 213
[4) Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[5] Pettifor D G 1989 Pkys. Rev. Letl. 63 2480
[6] Finnis M W and Sinclair J E 1984 Phil. Mag. A 50 45
[7] Sutton A P, Finnis M W, Pettifor D G and Ohta Y 1988 J, Phys. C: Solid State Phys. 21 35
[8] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[9] Foulkes M and Haydock R 1989 Phys. Rev. B 39 12520
{10] Harris J 1985 Phys. Rev. B 31 1770
[12] Read A J and Needs R J 1989 J. Phys.: Condens. Maiter 1 7565
[12] Finnis M W 1990 J. Phys.: Condens. Matter 2 331
f13] Robertson1 J and Farid B 1991 Phys. Rev. Lett, 66 3265
[14] Robertson I J, Payne M C and Heine V 1991 Europhys. Lett. 15 301
[15) Car R and Parrinello M 1985 Phys. Rev. Leti. 55 2471
[16] Heine V 1991 Solid State Physics vol 35 (New York: Academic) pp 80-82
[17] Goodwin L, Needs R J and Heine V J 1990 J. Phys.: Condens. Matter 2 351
[18] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 368
[198] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[20] RobertsonI ] and Payne M C 1990 J. Phys.: Condens. Maller 2 9837
[21] Monkhorst J J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Robertson 1 J et ol in preparation



