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Abstract. 'We present a database of 171 aluminium structures with coordination number ranging
from O to 12 and nearest-neighbour distance from 2.0 A to 5.7 A. The purpose of the database
is further to test and refine empirical and semi-empirical models of metallic bonding. Each
structure is specified by the atomic positions and the unit cell used and a total energy per
atom is given. Full details of the first-principles total energy calculations are given afong with
the estimated errors involved. Examples of densities of states are also given for a few of the
structures.

1. Introduction

Total energy calculations from first principles to simulate complex systems of condensed
matter have steadily improved over the past few years. The use of more efficient algorithms
and access to more powerful computers has led to much larger systems being attempted
now than was previously possible. Still there are many situations where attempting to
model from first principles is impractical. These are processes that are large on the atomic
scale, such as crack formation, needing thousands of atoms. At present, first-principles
calculations can handle tens or hundreds of atoms depending on the atomic species.

‘We are therefore forced to use empirical or semi-empirical models. These models have
been developed particularly with reference to metallic bonding and span from those that

- are calculated partly from first principles such as effective-medium theory [1, 2] to simpler
empirical schemes such as Finnis—Sinclair potentials [3, 4]. Others are based on a tight-
binding form for the electronic structure [5].

If these models are to be useful they must obviously describe accurately the material
in question. In most cases the model is constrained to give some experimental constants of
the bulk material such as the lattice constant and bulk modulus. It is then hoped that the
model represents the material adequately. However, the atomic configurations that occur
in the modelling of complex problems are often very different from the geometry of the
stable crystal structure (and small deviations from it} about which one has experimental
information, e.g. at a' rough surface or a grain boundary.

Hence our approach here. A large database of ab initio total energies for a very wide
range of different structures has been calculated for aluminium. This database has already
been used to test some models {6, 7). Now the complete database is published here to
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make it available to others for the purpose of further refining and testing models of metallic
bonding. The size and range of the database is wider than had been produced before
by more than an order of magnitude. Since completing this work Ercolessi (see [8]) has
done something similar with a very large number of configurations but a narrower range of
coordination number.

The layout of the paper is as follows. Section 2 discusses the ab initio techniques
used to calculate the energies of the structures. Section 3 gives the database results and
the following section gives an estimate of the errors involved in calculating the energies.
Finally a brief summary is given in section 5.

2. Method of calculation

The energy of each structure in the database was calculated ab initio using the density
functional theory formulation of quantum mechanics in the local density approximation for
exchange and correlation in the usual way; see [9] for a review.

As usval with metals, the states in the Brillouin zone had to be sampled at a large
number of & points to include accurately the effect of the sharp discontinuity at the Fermi
level, The k. p method was used to obtain the band energies and wave functions at a
large number of & points. The method works by first generating a set of wave functions
at one particular point, and then using them as a basis set for calculating those for other k&
points for the same potential. There is no restriction on the k point used to generate the
wave functions, neither does it need to be only one point—it can be a set of points. This
method has been described in more detail by Robertson and Payne [10]. The calculation
then proceeds by iteration to self-consistency. After each iteration the energy was evaluated
using the Harris—Foulkes energy functional [11]

H =3 e — Ealnar)]+ Excliia(®)] = [ & pxcliu(r)ia(r) + Eun M
i

where Ey is the Hartree energy, Exc is the exchange—correlation energy, Ey, is the nuclear—
nuclear interaction, pxc is the exchange—correlation potential, ¢; is the ith eigenvalue, wy;
is the cormresponding occupation probability and nj,(r) is the input charge density. This
expression is made up of terms that are functions of the input charge density and a term that
is the weighted sum of the output eigenvalues. This energy functional is stationary at the
ground-state density, so the errors will be second order with respect to the charge density.
This energy functional was chosen over the Kohn-Sham functional because it does not
require knowledge of the output charge density or of the output kinetic energy. Although it
would not have been computationally expensive to calculate these quantities, this provided a
small saving in time. The etrors in the k - p method were analysed thoroughly [10, 12] and
a discussion of this error is given later in section 4. Using the k - » method, calculations
were several orders of magnitude faster than with previcus methods and this allows one to
use much larger k& point sets than would otherwise have been possible.

The pseudopotential used was a modified Heine—Abarenkov local pseudopotential. This
pseudopotential was tested by Goodwin er a! [13]. Tests on it included calculating the
bulk modulus, binding energy and some phonon frequencies. It was found to give good
agreement with more accurate norm-conserving pseudopotentials and reasonable agreement
with experimental results. A summary of these results is given in table 1. In any case the
purpose was not to obtain an accurate database specifically for aluminium; the purpose was
to have a database for some metal on which one could test models of metallic bonding. It
does not matter that it is a slightly fictional metal, very similar to real aluminium, defined
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Table 1. Pseudopotential data; The bulk moduolus, binding energy for FOC structure and
phonon frequencies in units of 10'* radians per second for aluminium calculated with the local
pseudopotential, experimental values and a result of a norm-conserving pseudopotential.

Bulk modulus £y @phon

(Mbar) (eViatom) LX) TX)
Calculated (local) 0.79 3.68 568 311
Experimental 0.74 3.40 608 365
Calculated (norm) — 3.67 —_ —_

precisely by its pseudopotential. A local pseudopotential was used, as the & - p method
developed by Robertson and Payne [10] was for local pseudopotentials only. A non-local
version was not developed. A plane-wave basis set was used with 190 eV cut-off energy,
and the exchange and correlation function of Ceperley and Alder [14] as parametrized by
Perdew and Zunger [15]. Each structure was calculated with a 8 x 8 x 8 Monkhorst-Pack
set of & points.

Firstly 18 structures were taken and their total energy calculated to self-consistency.
All structures were modeiled using orthorhombic supercells and the structures were chosen
s0 that in each structure all the atoms are equivalent by symmetry. This makes it easier
to deduce something about the interaction from the database. For these 18 structures the
nearest-neighbour distance was fixed at 2.85 A and vacuum was modelled by an additional
distance of 2.85 A. The breakdown on the types of structures is as follows:

(i) six three-dimensional struoctures: ECC, BCC, simple hexagonal, vacancy lattice based
on FCC with one atom missing per unit cube, simple cubic and diamond;

(ii) three consisting of one layer of atoms: close-packed layer, square layer, graphite;

(iif) five structures that involved two layers of atoms (termed slabs): square slab, close-
packed slab and three FCC slabs using a pair of 110, 100 and 111 layers respectively;

(iv) a line structure, a girder structure, a dimer and an aton.

The wide range of situations included were chosen to be representative of situations
that could be found in a real solid. The low-coordination ones are typical of atoms
approaching a surface, the intermediate ones are typical of atoms in a surface and the
kigher-coordination ones are for atoms in the bulk or around a crack or a vacancy. With
hindsight other structures such as rearrangements at constant volume, for instance “frozen’
phonons or sheared structures, would have been useful to have in the database, but these
are not represented here.

In order to create a much larger database, ten of these structures were chosen and total
energies calculated for dilated and contracted forms of these structures. By expanding or
contracting the supercell the nearest-neighbour distance was varied from 2 A to 5 A. To
calculate the total energy self-consistently for these structures would have taken a great deal
of time. Therefore the input charge density was derived from the original self-consistent
calculations and only one iteration of the system was taken, thus dispensing with self-
consistency. We had shown earlier that the self-consistent charge densities for all the
original 18 structures aside from the free atom could all be expressed to good accuracy as
the sum of spherical, slightly contracted, atomic charge densities [16]. Moreover the use of
the Harris~Foulkes functional [11] reduces errors to second order. To test the validity of
this approach, a range of coordination and the extremes of distance variation for the simple
cubic structure were tested [16]. The error in abandoning self-consistency is discussed in
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Table 2. The energies (per atom) of the basic 18 structures calculated self-consistently, Ag all
the cells are orthorhombic only the lattice parameters have been given. Also given are N,, the
number of atoms in the cell, and the positions of the atoms.

Unit cell dimensions (A) Atomic positions Energy

Structure a b c N (cell units) {eV/atom)

Atom 570000 5700000 570000 1 (0.0000,0.0000,0.0000) —54.95

Dimer 855000  S.70000 570000 2 (0.3333,0,0000,0.0000) —55.66
(0.6666,0.0000,0.0000)

Line 285000 570000  5.70000 (0.0000,0.0000,0.0000) —56.28

Graphite 570000 855000 493634 4 {0.0000,0.0000,0.0000)  —56.95
(0.0000,0.3333,0.0000)
(0.0000,0.5000,0.5000
(0.0000,0.8333,0.5000)

Girder 570000 285000 798700 2 (0.0000,0.2500,0.1545) —57.04
(0.0000,0.7500,0.8455)

Square layer 570000 285000  2.85000 (0.0000,0,0000,0.0000) —57.29

Diamond 658175 465400 465400 4 (0.0000,0.0000,0.0000) —57.42
(0.2500,0.5600,0.00003
(0.5000,0.5000,0.5000)
{0.7500,0.0000,0.5000)

Square slab 855000  2.85000  2.85000 2 (0.0000,0.0000,0.0000) —57.64
{0.3333,0.0000,0.0000)

ce layer 285000 493630 570000 2 (0.0000,0.0000,0.0000) —57.49
(0.5000,0.5000,0.0000)

Simple cubic 285000  2.85000  2.85000 (0.0000,0.0000,0.0000) —57.91

Fec (110) 712500  2.85000  4.03050 2 (0.0000,0.0000,0.0000) —57.54
(0,2000,0.5000,0.5000)

cP slab 855000 493630  2.85000 4 (0.0000,0.0000,0.0000) —57.89
{0.0000,0,5000,0.5000)
(0.3333,0.0000,0.0000)
(0.3333,0.5000,0.5000)

Fce (100) 734710 403050 403050 4 (0.0000,0.0000,0.0000) —57.85
(0.2743,0.5000,0.0000)
(0.2743,0.0000,0.5000)
{0.0000,0.5000,0.5000)

Vacancy 403050  4.03050 403050 3 (0.5000,0.5000,0.0000) ~58.10
(0.5000,0.0000,0.5000)
(0.0000,0.5000,0.5000)

Simple hexagonal ~ 2.85000  4.93630 285000 2 (0.0000,0.0000,0.0000) —58.12
(0.5000,0.5000,0.0000)

BCC 329090 329090 329090 2 (0.0000,0,0000,0.0000) —58.24
(0.5000,0.5000,0.5000)

gce (111) 285000 493634 802702 4 (0.0000,0.6000,0.0000) —57.97
(0.5000,0.5000,0.0000)
{0.0000,0.3333,0,2899)
(0.5000,0.8333,0,2899)

FCC 403050 403050 403050 4 (0.0000,0.0000,00000) —58.31
(0.5000,0.5000,0.0000)
(0.5000,0.0000,0.5000)
(0.0000,0.5000,0.5000)

—

b

—

more detail in section 4. Other computational details are as for the fully self-consistent
calculations except a 30 x 30 x 30 Monkhorst—Pack grid of k points was used. In total a
further 153 structure’s total energies were calculated in this way.
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Table 3. The results for the remaining 153 stmctures obtained using non-self-consistent
calculations. The orthorhombic cell dimensions, total energy per atom and the nearest-neighbour
distances, rg, are given.

Unit cell (A) Energy 1o

Structure a B e (eViatom) (A)
Graphite 57000 85500 493634 —56979 2.85
Graphite 57000 81500 4.70540 —57.120 2,72
Graphite 5.7000 7.8500 4.53220 -57.198 262
Graphite 57000 7.5500 435899 -57.244 2.52
Graphite 57000 72000 4.15692 -57.214 2.40
Graphite 57000 70000 4.04145 —57.139 2.33
Graphite 57000 '6.8000 3.92598% —57.008 2.27
Graphite 57000 6.6000 3.81051 —56.802 2.20
Graphite 57000 64500 372391 —56.643 2.15
Graphite 57000 62000 357957 —56.068 207 .
Square layer 33500 33500 57000 —56.697 3.35
Square layer 32500  3.2500 57000 -—56.824 3.25
Square layer 31500 3.1500 57000 —56.945 315
Square layer 3.0500 | 3.0500 57000 —57.074 3.05
Square layer 29500 29500 57000 ~—57.190 295
Square layer 57000  2.8500 2.8500 —57.307 285
Square layer 27500 27500 57000 —57.396 275
Square layer 2.6500 26500 57000 —57.460 2.65
Square layer 25500 25500 57000 —57.482 2.55
Square layer 24500 24500 57000 —57.424 2,45
Square layer 24000 24000 57000 —57.366 240
Saquare layer 23500 23500 57000 -—57.276 2.35
Square layer 23000 23000 57000 —57.149 2.30
Square layer 22500 22500 57000 —56.962 225
Square layer 22000 22000 57000 —56.738 220
Square layer 21000  2.1000 57000 —56.081 2.10
Square layer 57000 2.0000 20000 - —54.976 2.00

Close-packed layer 3.5500 6.1487 57000 —56.726 3.55
Close-packed layer 3.3000 . 5.7157 5.7000 —57.038 3.30
Close-packed layer 31000 53693 57000 —57.294 3.10
Close-packed layer 29500 5.1095 57000 —57.469 295
Close-packed Iayer 2.8500 49363 5.7000 —57.565 2.85
Close-packed layer 27500 47631 57000 —357.645 275
Close-packed layer 2.6500 4.589% 57000 —57.684 2.65
Close-packed layer 2.5500 44167 357000 —57.671 255
Close-packed layer 2.5000° 43301 57000 —57.633 2.50
Close-packed layer 24000 4.156% 57000 -—57.477 240
Close-packed layer 23500 4.0703 57000 —57.330 235
Close-packed layer 2.3000 39837 357000 —57.149 2.30
Close-packed layer 2.2500 3.8971 57000 —356.901 225
Close-packed layer 22000 38105 57000 —56.589 220
Close-packed layer 2.1500 3.7239 57000 —56.183 2.15
Close-packed layer 21000 3.6373 5.7000 —35.674 210
Close-packed layer 20500 3.5507 57000 —355.008 2.05
Close-packed layer  2.0600 34641 57000 —54.196 2.00

Line 32000 57000 57000 -—56.115 3.20
Line 31000 57000 57000 —56.183 3.10
Line 30000 57000 57000 --56.242 3.00
Line 29000 57000 57000 -—56.29 T 290

Line 2.8500 57000 57000 —56.323 285
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Table 3. Continued.

Unit cell (A) Energy ro
Structure a b c (eVistom) (A)
Line 2.8000 57000 57000 —56.342 2,80
Line 27000 57000 57000 —56.384 2.70
Line 26000 57000 . 57000 —36.414 2.60
Line 25000 57000 57000 —56.449 2.50
Line 24000 57000 57000 —56.492 2.40
Line 23000 57000 57000 —56.505 2.30
Line 22000 57000 57000 —56.414 220
Line 21000 57000 57000 —56.155 2.10
Line 20000 57000 57000 —55.659 2.00

Square slab 8.5500 3.8500  3.8500 —56.633 3.85
Square slab 8.5500  3.4000 34000 -—57.063 3.40
Square slab 8.5500 3.1500 _ 3.1500 —57.357 3.15
Square slab 8.5500  3.0000 30000 —57.545 3.00
Square slab 85500 28500  2.8500 —57.708 285
Square slab 85500 27500 27500 —57.785 275
Square slab 85500 2.6500  2.6500 —57.831 2.65
Sguare slab 85500 2.5500 2.5500 —57.828 2.55
Square slab 85500 25000  2.5000 —57.792 2.50
Square slab £.5500 24500 24500 —57.740 245
Square siab 85500 24000 24000 —57.659 2.40
Square slab 85500 23500 23500 —57.545 235
Square slab £.5500 2.1000 21000 —56.196 2.10
FcC (100) slab  7.3471 57000 57000 —56.758 403
Fcc (100) slab  7.3471 52000 52000 —57.106 3.58
ree (100) slab  7.3471 48500 4.8500 —57.365 3.43
Fcc (100) slab  7.3471 46000 46000 —57.552 325
FoC (100) slab  7.3471 44000 44000 —57.698 3.11
Fec (100) slab  7.3471 42500 42500 —57.304 3.00
Fec (100) slab  7.3471 41000 4.1000 —57.898 2.90
Bcc (100) slab  7.3471 40305 40305 —57.931 2,35
roc (100) slab  7.3471 39000  3.0000 —57.983 276
Foc (100) slab 73471 3.8000  3.8000 —58.007 2.69
Fco (100) slab  7.3471 37000 37000  —S8.003 2.62

Diamond 7.6500 540937 540937 —=56.715 331
Diamond 6.5817 465400 4.65400 —57425 2.85
Diamond 64500 456084 456084 --57.500 279
Diamond 6.3000 445477 445477 —57.573 273 ..
Diamond 61000 431335 431335 -57.652 254
Diamond 5.9500 4.20729 420729 —57.685 2.58
Diamond 58000 4.10122 410122 —57.682 2.51
Diamond 56500 399515 399515 —57.645 245,
Diamond 54500 385373 3.85373 —57.518 2.36
Diamond 4.8500 342947 342947 -56.192 210

Simple cubic 57000 5.7000 57000 =55.056 ., 5790
Simple cubic 53000 . 5.3000 53000 =55.234 5.30
Simple cubic ~ 4.9000 4.9000 49000 —35473 4.90
Simple cubic 4.5000 4.5000 45000 =55.777 450
Simple cubic 410000 4.1000 41000 -—56.182 4.10
Simple cubic ~ 3.6000  3.6000 3.6000 -—56.834 3.60
Simple cubic ~ 3.5000 3.5000 3.5000 -—56.991 3.50
Simple cubic 34000 3.4000 34000 -—57.153 3.40
Simple cubic 33000, 3.3000 33000 -—57.307 3.30
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Table 3. Continued,

Unit cell (A) Energy ro

Structure a b ¢ eV/atom) (A)

Simple cubic  3.2000 32000 3.2000 -57.470 3.20
Simple cubic  3.1000  3.1000 3.1000 —57.640 3.10
Simple cubic  3.0000 3.0000 3.0000 —57.800 3.00
Simple cobic 29000 29000 29000 —§7.927 290
Simple cubic  2.8500 2.8500 28500 —57.988 2.85
Simple cubic  2.8000 2.8000 2.8000 —58.014 2.80
Simple cubic 27000 27000 2.7000 —58.076 2.70
Simple cubic  2.6000 2.6000 2.6000 —58.041 2.60
Simple cubic  2.5000 2.5000 2.5000 —57.917 2.50
Simple cubic  2.3500 23500 23500 —57.451 2.35
Simple cubic  2.1500 21500 2.1500 —55.776 2.15
Simple cybic  2.0000 2.0000 2.0000 —53.229 2.00

Vacancy 52500 5.2500° 52500 —56.840 3.71
Vacancy 49500 49500 4.9500 —57.161 3.50
Vacancy 47000 47000 47000 57444 332
Vacancy 45500 45500 4.5500 —57.624 322
Vacancy 44000 44000 44000 —57.792 311
Vacancy 42500 42500 42500 -—57.959 3.00
Vacancy 41000 4.1000 4.1000 —58.099 2.90
Vacancy 40305 4.0305. 4.0305 -58.140 2.85
Vacancy 40000 4.0000 4.0000 —58.159 2.83
Vacancy 39000 39000 3.95000 —58.200 276
Vacancy 38500 3.8500 3.8500 —58.206 272
Vacancy 37500 37500 37500 —58.163 265
Vacancy 3.6500 3.6500 3.6500 —58.076 258
Vacancy 3.5500 3.5500 3.5500 —57.945 251
Vacancy 34500 34500 34500 —57.727 2.44
Vacancy 3.3500 3.3500 3.3500 —57.398 237
Vacancy 32500 3.2500 32500 —56.901 230
Vacancy 31500 3.1500 3.1500 —56.214 223
Vacancy 3.0500 3.0500 3.0500 —55.324 216
FCC 6.1305 6.1305 6.1305 —56.384 4.33
FCC 57305 57305 57305 —56.742 4,05
FCC 54305 54305 54305 —57.046 3.84
FCC 52305 52305 52305 -57.2066 3.70
FCC 5.1305 51305 5.1305 -57.376 363
ECC 50305 5.0305 50305 —57.488 3.56
FCC 49305 49305 49305 —57.605 3.49
FCC 4,8305 4.8305 4.83305 —57.719 3.42
FCC 47305 47305 47305 —57.828 335
FCC 46305 46305 4.6305 —57943 3.27
ECC 45305 45305 45305 —58.040 3.20
FCC 44305 44305 44305 -58.139 313
FCOC 43305 43305 43305 —58.228 3.06
FOC . 42305 42305 42305 -58301 299
FCC 41305 4.1305 41305 -—58.342 292
2usl 40305 40305 40305 -58.345 2.85
FCC 3.7305 3.7305 . 3.7305 —58.092 2.64
FCC 34305 34305 34305 -57.180 242
FCOC 32305 32305 3.2305 —55.848 228

FCC 3.1305 31305 3.1305 -54.817 221
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3. Results

Tables 2 and 3 give the complete database. Table 2 gives the 18 different structures
calculated to self-consistency all with interatomic spacing rp = 2.85 A. The remaining
153 structures are given in table 3. The atomic positions for the latter are the same as for
the original structures given in table 2. This dataset can be accessed directly over telnet by
using fip teml.phy.cam.ac.uk and typing anonymous for the login name, and user name
and address for the password. The data are in the Al-structures directory and all the files
can be copied in the usual way with the get command.
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Figure 1. The density of states for three structures: (a) a close-packed layer, with dimensions of
the unit cell @ =2.85 A, b =4.9363 A, ¢ = 5.7 A; (b) a simple cubic structure, with unit ciell
a=p=rc=285A; {c)a diamond structure, with vnit cell 4 = 6.58175 Ab=c=285A

Furthermore the density of states for some of the structures were calculated by
constructing a histogram of the energy eigenvalues. Graphs of the density of states for
the close-packed layer, simple cubic and diamond structures are given in figure 1. The
graphs are given only to show how the densities of states produced by the eigenvalues
behave, Figure 1(a) gives the close-packed layer’s density of states and has a stepped form
similar to that of a two-dimensional non-interacting electron gas. Figure 1(c) shows the
simple cubic density of states and gives a roughly parabolic form as would be expected for
a three-dimensional non-interacting deunsity of states. The density of states for aluminizm in
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the diamond structure is rather similar to the valence band of silicon with the third minimum
in figure 1(b) corresponding to the band gap of Si. The Fermi level for all three cases lies
around —12 &V,

4. Estimation of errors

The following gives an estimate of the errors in the calculations given in the last section.
There are four main groups of error: the error from using the local density approximation
for the exchange and correlation energy, the pseudopotential error, the errors in the finite
sampling and the % - p method, and the error due to the non-self-consistency of the second
set of calculations. The pseudopotential, as commented on in section 2, appeared to be
reasonable and any errors involved in it are ignored. In any case, for purposes of testing
different types of bonding model we can regard it as a database for a fictitious metal defined
by the local psendopotential and very similar to aluminium. Similarly the error due to the
local density approximation is not discussed here. This leaves two remaining errors to be
estimated. These have been analysed in depth in three papers {10, 12, 16] and the following
is a summary of the errors with an estimate of the numerical accuracy of the results given
in section 3.

Firstly the k& - p and finite-sampling errors: these can be spiit up into four lots. There is
the finite-sampling error in the eigenvalue sum, the finite-sampling error in charge density,
the & - p error in the eigenvalue sum and the &k« p error in the charge density. The two
finite-sampling errors arise from the discrete sampling in the Brillouin zone. These are
general to total energy pseudopotential calculations and can be reduced by finer & point
sampling. Indeed the purpose of using the k - p method was to generate quickly the energy
at so many k points that the error from discrete k point sampling was rendefed negligible
[12]. However, there remains the error fiom the &k - p method itself.

The root of the problem is that the k - p method uses a basis set detived from one point
(or possibly set of points) and uses this rather than the original basis set, in this case plane
waves. When these two errors were analysed [12] it was found that the k - p error in the
charge density was negligible. However, the k - p error in the eigenvalue sum was found
to be significant. The total error of all four sources was estimated as no more than 0.05 eV
per atom. It should be noted that the sign of this error is always positive and it increases
with increasing size of Brillouin zone and hence with decreasing size of unit cell.

Secondly we have the error due to non-self-consistency. To treat the remaining 153
structures only one iteration was taken, so leading to an error in the total energy calculated,
as compared to a full self-consistent calculation. This error is always negative, being largest
in meagnitude for dilated structures. The magnitude of the error is estimated by comparing
the calculations for ro = 2,85 A in table 3 with the correspondmg self- -consistent ones
in table 2. The diiference for the ten structures of table 3 was a RMS value of 0.05 eV
with a maximum of 0.08 eV. Taking the worst possible case a combined error on the latter
calculations due to residual errors and also the lack of self-consistency gave an error of
0.13 eV, but this is very much a maximum; we believe that the systematic trends are
represented considerably more accurately.

5. Conclusion

This paper has presented a database of 171 first-principles total energy calculations for
aluminium. It provides a tool for developing and testing empirical or semi-empirical models
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of metallic bonding. The first 18 structures were calculated self-consistently using the k- p
method with the coordination number varying from zero to twelve, and all with interatomic
spacing of 2.85 A close to that of bulk FCC aluminium. The remaining 153 calculations
dispensed with complete self-consistency and calculated dilations or contractions of ten of
the original calculations, using the Harris—Foulkes functional to reduce the resulting error
to second order. In these the interatomic spacing varied from 0.7 to 2.0 times that of the
original 18. An uncertainty of up to 130 meV in the given energies can be assumed for
the non-self-consistent calculations and a smaller error of up to 50 meV for the original 18
calculations.

As mentioned in the introduction an example of the use of this database can be seen
in Robertson et al [7]. Tests on over 24 empirical models were made. There were general
constraints on the form of the functions used and at most nine free parameters to fit the
models to the data. It was found that at best the models would give a RMS emror of 0.11 eV
per atom when optimized. Although this was deemed unsatisfactory for using them, only a
small selection of the many possibilities of functional forms were looked at. It is therefore
not inconceivable that an alternative empirical model approach can be a better fit to the data
than the one studied. By uvsing this database there is available a test to gauge the accuracy
of such an empirical model.
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