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We examine the recently-proposed scheme [Kohn W., Phys. Rev. Lett.
76, 3168 (1996)] for performing linear-scaling calculations within
density-functional theory by direct minimization with respect to the
single-particle density-matrix using a penalty-functional to exactly en-
force the idempotency constraint. We show that such methods are in-
compatible with standard minimization algorithms (using conjugate
gradients as an example) and demonstrate that this is a direct result
of the non-analytic form of penalty-functional which must be chosen
to obtain a variational principle for the total energy. c© 1998 Elsevier
Science Ltd. All rights reserved

The traditional formulation of density-functional the-
ory [1, 2] (DFT) in terms of a set of extended single-
particle wave functions has led to the development
of schemes for performing total-energy calculations
which require a computational effort which scales as
the cube of the system-size (i.e. the number of atoms,
electrons or volume of the system). This scaling re-
sults from the cost of diagonalizing the Hamiltonian
or orthogonalizing the wave functions. Methods based
upon the single-particle density-matrix (DM), which is
free from orthogonality constraints and short-ranged
in real-space, offer the prospect of electronic structure
calculations at a cost which scales only linearly with
system-size. We investigate one scheme that has been
proposed for achieving this goal, which uses a penalty-
functional to impose the idempotency constraint on
the DM. We show that the form of penalty-functional
which must be chosen to obtain a variational princi-
ple for the total energy precludes the use of efficient
minimization algorithms commonly used in electronic
structure calculations. We apply the method to crys-
talline silicon and show that the desired minimum can-
not be found and therefore that the variational prin-
ciple cannot be used in practice.

In terms of a set of orthonormal orbitals {ϕi} and
occupation numbers { fi}, the DM ρ is written as
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ρ(r, r′) =
∑

i

fi ϕi(r)ϕ∗i (r
′). (1)

For the ground-state DM, the {ϕi} are eigenstates
of the self-consistent Kohn-Sham Hamiltonian with
eigenvalues {εi} and occupation numbers { fi} equal
to unity or zero for states below or above the chemi-
cal potential µ respectively. The DM must be Hermi-
tian and normalized (to correspond to a system of Ne

electrons):

N[ρ] = 2
∫

dr ρ(r, r) = 2
∑

i

fi = Ne, (2)

where the factor of two arises from spin degeneracy. In
addition, the ground-state DM must be idempotent:

ρ2(r, r′) =
∫

dr′′ ρ(r, r′′)ρ(r′′, r′) = ρ(r, r′). (3)

The energy functional E[ρ] is defined by

E[ρ]=−
∫

dr′
[
∇2

rρ(r, r′)
]

r=r′

+EHxc[n]+
∫

dr Vext(r)n(r), (4)

where EHxc[n] is the sum of the Hartree and exchange-
correlation energies which depend only on the elec-
tronic density n(r) = 2ρ(r, r) and Vext is the external
potential arising from the ions. The ground-state en-
ergy can be found by minimizing this functional with
respect to all Hermitian, normalized and idempotent
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DMs. Without the idempotency constraint, the mini-
mization is unstable with respect to unphysical DMs in
which low-energy states are over-occupied (with more
than two electrons each) and high-energy states are
negatively occupied.

Exploiting the short-ranged behaviour of the DM,
i.e. that ρ(r, r′) → 0 exponentially [3] as |r− r′| →
∞, by imposing some spatial cut-off rcut (such that
ρ(r, r′) = 0 for |r− r′| > rcut) results in a linear-scaling
method. The most significant hurdle to overcome is
the imposition of the idempotency constraint. This can
be achieved implicitly using a purifying transforma-
tion [4] which has been implemented in several tight-
binding and DFT schemes [5–8].

An alternative approach to imposing the idempo-
tency constraint has been proposed by Kohn [9], who
suggested minimizing the functional Q̃ defined by

Q̃[ρ;µ,α] = ENI[ρ2]− µN[ρ2]+αP[ρ] (5)

where ENI is the total energy of the non-interacting
Kohn-Sham system, N is defined in (2), and the
penalty-functional P is

P[ρ]=
{∫

dr
[
ρ2(1− ρ)2

]
r′=r

} 1
2

=
∑

i

f 2
i (1− fi)2

 1
2

. (6)

Kohn derived a variational principle for the functional
Q̃ which states that for values of α larger than some
critical value, the minimum value of Q̃ is an upper
bound to the ground-state grand potential of the sys-
tem.

Rather than minimizing the non-interacting energy,
as proposed by Kohn, we can instead minimize the
interacting energy self-consistently. Using the square
of the DM to calculate ENI in (5) has the advantage
that it guarantees that the charge density is positive-
definite. However, in order to simplify the analysis here
we consider the functional Q defined by

Q[ρ;µ,α] = E[ρ]− µN[ρ]+αP[ρ] (7)

where the interacting energy E is defined by (4), N
by (2) and P by (6). Using Janak’s theorem [10] the
derivative of Q with respect to occupation numbers is

∂Q[ρ;µ,α]
∂ fi

= 2(εi − µ)+
α

P[ρ]
fi(1− fi)(1− 2 fi).(8)

For the case of idempotent DMs, for which P = 0, we
obtain the special cases

∂Q[ρ;µ,α]
∂ fi

∣∣∣∣∣
fi={0±,1±}

= 2(εi − µ)±α, (9)

since, in this case, all variations away from the idem-
potent ground-state DM cause Q to increase. We note
that the first derivative of the functional is undefined
for idempotent DMs. The ground-state idempotent
DM will thus minimize Q if α exceeds some critical
value αc for which a lower bound is

αc > 2 max
i
|εi − µ| . (10)

This is illustrated schematically in Fig. 1 for the case of
a single occupation number corresponding to a state
above the chemical potential. For α > αc the mini-
mum value of Q is obtained when fi = 0. This outlines
the variational principle established by Kohn, but we
note that the functional Q is minimal only in the sense
that it takes its minimum value at the ground-state,
but not in the sense that its derivatives vanish at the
ground-state, since they are undefined at that point.

0 1
fi

0 1
fi

0 1
fi

α<αc α=αc α>αc

Fig. 1. Schematic illustration of the variational prin-
ciple: behaviour of the grand potential (dotted) and
total functional (full) for representative values of α
when the occupation number of a single state above
the chemical potential is varied.

The penalty-functional P has a branch point at its
minimum, due to the square-root form employed (6).
However, this square-root is crucial to establishing the
variational principle. In Fig. 2, the effect of using an
analytic penalty-functional (the square of P) is plot-
ted and it is clear that the minimum now occurs for
fi < 0 for all values of α. The total energy calcu-
lated in this case will no longer be a variational up-
per bound to the ground-state energy. We have re-
cently introduced a method for obtaining accurate
estimates of the true ground-state energy from such
nearly-idempotent DMs, and details can be found else-
where [11]. Nevertheless, the non-analytic form of the
penalty-functional (6) must be employed if we wish to
obtain a variational principle for the energy.

Several schemes exist for directly minimizing func-
tions of many variables. The simplest of these is the
method of steepest descents in which the gradient of
the function is used as a search direction in the mul-
tidimensional space. The minimum value of the func-
tion along this direction is found and the process it-
erated to convergence. In Fig. 3a, the results of ap-
plying this method to an exactly quadratic function
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Fig. 2. Schematic illustration of the lack of a varia-
tional principle when an analytic penalty-functional
is used. For the case of unoccupied bands, as shown
here, the minimum occurs for fi < 0.

f (x, y) = x2+10y2 are plotted, starting from the point
(5,1). Successive search directions are always orthogo-
nal, and the method is not guaranteed to find the min-
imum in a finite number of steps. The method is clearly
inefficient, since all of the information from previous
function and gradient evaluations is ignored when cal-
culating new search directions. In contrast, the con-
jugate gradients method [12] uses this information to
construct independent search directions. Each succes-
sive step effectively eliminates one dimension of the
space to be searched, so that the minimum is found in
a number of steps no greater than the dimensionality
of the space. The results for this method are plotted in
Fig. 3b for the same quadratic function plotted in Fig.
3a. This method has been successfully implemented in
traditional electronic structure calculations [13–15].

a b

Fig. 3. Elliptic contours of a quadratic function show-
ing search directions obtained by (a) the steepest de-
scents method (directions are mutually orthogonal,
and a large number of steps is required to find the min-
imum) and (b) the conjugate gradients method (only
two steps required to find the minimum exactly).

However, the conjugate gradients method relies on
the accuracy of a quadratic approximation of the func-
tion around the minimum. As observed, the functional
Q has a branch point at its minimum which arises from
the square-root that appears in the penalty-functional,
and is therefore non-analytic at the minimum. No mul-
tidimensional Taylor expansion for the functional ex-
ists about the minimum, and so the local informa-
tion (functional values and gradients at points) used
to construct the conjugate directions gives a mislead-
ing picture of the global behaviour of the functional.
In Fig. 4a the results of a steepest descents minimiza-

tion of the function g(x, y) = √ f (x, y) =
√

x2 + 10y2

is plotted, and exactly the same sequence of points is
generated as in Fig. 3a. However, the results obtained
using the conjugate gradients method, plotted in Fig.
4b, are now worse than for steepest descents.

a b

Fig. 4. Elliptic contours for a function with a branch
point at the minimum (the square-root of the func-
tion plotted in Fig. 3) with search directions for (a) the
steepest descents method (exactly the same sequence
of points is generated as in Fig. 3a) and (b) the conju-
gate gradients method (now less efficient than steepest
descents).

In Fig. 4, the exact line minimum is found in each
case. In practice, however, the position of the line min-
imum is usually estimated, by making a parabolic in-
terpolation of the functional along the search direc-
tion using the initial value and first derivative of the
functional, and its value at a trial step. In this case,
the line minimum estimate will also be wrong, further
reducing the efficiency in both cases.

These problems are not confined to the conju-
gate gradients method alone, but apply equally to
any method which attempts to use gradients to
build up an estimate of the Hessian of the func-
tional e.g. the Fletcher-Powell or Broyden-Fletcher-
Goldfarb-Shanno algorithms [16]. The Car-Parrinello
scheme [17] would also fail in this case since the
derivative of the penalty-functional would appear in
the equations of motion for the molecular-dynamics
Lagrangian. Simulated annealing methods [18] such
as the Metropolis algorithm [19] will successfully min-
imize functions of this kind, since they do not use
the gradients, but the number of iterations required
in this case would increase with system-size as the
number of dimensions to be searched increased, thus
spoiling the linear scaling of the method.

We can attempt to find a set of conjugate directions
for the non-quadratic functions encountered here. For
a function f (x) with a quadratic minimum, a set of
conjugate directions {dk} are defined by

d1 = −∇ f (x0),
dk+1 = −∇ f (xk)+ γkdk (k > 0) (11)

where k labels the iteration and xk is the position of the
line minimum along the search direction dk. Several
expressions for γk exist, all of which are equivalent for
exactly quadratic functions, and one of these is

γk = ∇ f (xk) · ∇ f (xk)
∇ f (xk−1) · ∇ f (xk−1)

. (12)
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For the function g(x) = √ f (x), the gradient ∇g(x) =
[2g(x)]−1∇ f (x) so that redefining γk by

γk =
g(xk)

g(xk−1)
∇g(xk) · ∇g(xk)

∇g(xk−1) · ∇g(xk−1)
(13)

enables a set of conjugate directions to be obtained,
which are parallel to the directions obtained for f (x).
For the example of the function plotted in Fig. 4,
minimization using this new expression for γk yields
the same results as plotted in Fig. 3b. Such a scheme
would therefore enable the efficient minimization of
the penalty-functional P. However, for the functional
Q which consists of the sum of a functional with
a quadratic minimum, E − µN, and the penalty-
functional P which has a branch point like g(x) above
at the minimum, neither expression for γk is suitable,
and we are unable to define a set of conjugate direc-
tions which can be used to simultaneously minimize
both types of function.

When using the conjugate gradients method to min-
imize functions which are not exactly quadratic in
form, it is common practice to reset the conjugate di-
rections after a certain number of iterations by tak-
ing a steepest descent step. For functions of the same
form as Q, the method becomes rapidly less efficient
as the number of successive conjugate gradients steps
is increased for the reasons discussed above. Indeed,
for functions of many variables the method may com-
pletely fail to find the true minimum. Instead, the
method appears to converge to a value which is not
the minimum. This trend can be seen in Fig. 4b, in
which the conjugate directions become orthogonal to
the gradient. Therefore, the method fails not as a re-
sult of false minima, but because the minimization
becomes so slow as to be indistinguishable from true
convergence.

In order to see whether such behaviour appears in
a genuine DFT calculation, we have implemented this
scheme to perform total energy calculations, and have
applied it to crystalline silicon. The density-matrix was
expanded in separable form in terms of a sparse Her-
mitian matrix and a set of localized functions, as in
other schemes [5–8], and the localized functions them-
selves were centred on the ions and expanded in terms
of a localized spherical-wave basis-set [20] using an en-
ergy cut-off of 200 eV and angular momentum compo-
nents up to ` = 2. No attempt was made to converge
the calculation with respect to the density-matrix cut-
off. The variational principle proved by Kohn states
that for α > αc, P = 0 at the minimum. In Fig. 5, we
show the contribution of the penalty-functional αP to
the total minimized functional Q. As α is increased,
this contribution does not vanish above some critical
value (estimated from (10) and by Kohn’s limit to be

of the order of 50 eV for silicon) but rather decreases
slowly. Also plotted in Fig. 5 is the corresponding root-
mean-square error in the occupation numbers, which
also decreases as α increases. Thus the total energy
E will approach the true ground-state value, but no
variational principle can be invoked, since this only
holds for P = 0 exactly. This failure to observe Kohn’s
result in practice is due to the inability of the mini-
mization procedure to locate the true minimum of the
functional, due to its non-analytic form.
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Fig. 5. Variation of the contribution of the penalty-
functional to the minimized total functional and the
RMS error in the occupation numbers with respect to
α for crystalline silicon.

In conclusion, we have implemented a method based
upon the variational principle derived by Kohn [9] and
demonstrated a fundamental difficulty in using this
method in a computational scheme which is due to
the non-analyticity of the required penalty-functional.
Calculations on crystalline silicon confirm the trends
observed from considering simple model functions. We
have shown that the variational principle cannot be
exploited in practice because the nature of the func-
tional makes it unsuitable for use with current min-
imization techniques. Other schemes based upon the
purifying transformation, or which use an analytic
penalty-functional to approximately impose idempo-
tency (and subsequently correct for the error intro-
duced due to the lack of idempotency) will therefore
be more efficient.
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