1. Phys.: Condens. Matter 4 (1992) 10453-10460. Printed in the UK

Stacking fault energies in aluminium
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Abstract. The twin, intrinsic and extrinsic stacking fault energies together with the
FCC-HCP structural energy difference are calculated for Al by means of the total
energy pseudopotential method. The influence of supercell geometry is controlled by
extrapolating the calculated data to infinite cell size. All calculations include full inter-
planar relaxations and the final inter-planar separations are presented and shown to vary
sysiemalically for the three stacking faults. The calculated stacking fault energies are
shown 10 be consistent with a simple two-parameter model which describes the effeclive
inleractions between atomic planes.

1. Introduction

Developments over the last decade of computational methods in theoretical solid
state physics together with the continued improvements in computer performance
have made it possible to calculate a wide range of material properties. This may lead
to a fruitful interplay between experimental and computational methods where the
theoretical modelling of material properties can be based not only on experimental
input but also on information from ab initio calculations on idealized systems.

The stacking faults of crystals play an important role in materials due to
their interaction with dislocations. Dislocations often split into partial dislocations
with the formation of a stacking fault connecting the partials. The stacking fault
region modifies the properties of the dislocation and is therefore important for the
understanding of properties like dislocation mobility. An important input to the
modelling of dislocations is therefore the relevant stacking fault energies.

Stacking fault energies are tiny—of the order 50 meV per interface atom—and
they therefore also constitute a rigorous test case for total energy evaluations. First
of all, it is of course important to establish some experience and understanding of
the reliability of the local-density-functional scheme which is at the basis of most
electronic structure codes today. The local-density approximation aside, the different
approaches to total energy calculations contain many other approximations involving
the shape of the ionic potential, the basis set used to expand the wavefunctions and
the choice of atomic cells. It is therefore also important to compare different total
energy approaches and the stacking fault energies seem a good test case for such a
comparison.
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In this paper we determine the stacking fault energies by means of an ab initio
method. Section 2 explains the structure of the different stacking faults of the Fcc
structure. Section 3 gives an account of the calculational procedure used, including
some convergence tests. In section 4 the stacking fault energies are determined
directly by performing calculations on large supercells and the results are compared
to other recent theoretical studies [1,2,3,4,5]. It is shown that the calculated stacking
fault energies are consistent with an Ising model with two interaction parameters.
Finally the inter-planar relaxations are examined.

2. Stacking fault energies

In a close-packed stacking sequence of close-packed layers ({111) layers in the
FOC structure) each of the layers can be positioned in three different positions
usually referred to as A, B, and C. The unfaulted FCC structure corresponds to
consecutively stacking in the ... ABCABC... stacking sequence, while the stacking
sequence ... ABAB. .. gives the hexagonal close-packed structure. The two structures
are illustrated schematically in figure 1. Apart from these two structures, three
planar defects are of interest. (i) The twin stacking fault, ... ABCACBA..., where
the FCC stacking sequence is reversed at one (111) plane. This is the ideal X3
tilt grain boundary or the 180° twist grain boundary. (ii) The intrinsic stacking
fault, ...ABCACABC..., where one (111) plane is missing in the FCC stacking
sequence. This is the defect, that appears between the two partials of a split edge-
dislocation which has a (111} plane as its slip plane. (iii) The extrinsic stacking fault,
...ABCBABC..., where one extra {111} plane has been inserted in the FCC stacking
sequence. The three stacking faults are illustrated in figure 1.
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3. The calculational method

We use the total energy pscudopotential method [6] with the Ceperley-Alder local
exchange—correlation potential [7). An ab initio non-local pseudopotential of the
Kerker type [8] is used in the Kleinman-Bylander form [9]. The potential gives an
equilibrium lattice constant of 3.95A in good agreement with the experimental value
of 4.05A. The one-clectron Schrodinger equations are solved in a plane-wave basis
by means of the minimization technique based on conjugate gradients of Teter, Payne
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and Allan [10]). Occupation numbers for the solutions are found by the Gaussian-
smearing method of Fu and Ho [11] as modified by Needs er al [12]. The smearing
width is 200meV.

Plane waves with a kinetic energy up to 150eV are included in the basis set.
Convergence tests show that this is sufficient to determine energy differences to
about 2meV per atom for supercells relevant for the study of stacking faults.

The choice of k-points for integrating over the Brillouin zone is important for
the convergence in total energy differences between different supercells. The optimal
error cancellation is obtained when exactly the same k-points in absolute coordinates
are used for both calculations. The supercells used for the stacking faults all have
the same projection onto the layers but with a variable number of layers included
in the cell. The Monkhorst-Pack grids [13] we use have 8 x 8 k-points in the
planes. Due to the different numbers of layers in the supercells it is not possible to
maintain a complete match of k-points in the direction of the stacking and a larger
k-point density is therefore necessary in that direction. The number of k-points in
the direction of the stacking is varied with the height of the supercell to keep an
approximately constant k-point density. The density of k-points in this direction ends
up being approximately 6 times higher than in the planes in order to ensure almost
complete convergence in the k-space integration perpendicular to the planes. With
this construction energy differences between different supercells can be determined
to within a few meV,

The forces are calculated according to the Hellman-Feynman theorem when
performing jonic relaxations. Forces and stresses calculated with non-converged wave
functions serve to determine equilibrium positions and volumes while simultaneously
finding the solution of the Kohn-Sham equations in the best Car-Parrinello [14] spirit.

4. Results and discussion

The structural energy difference between the FCC and HCP crystal structures can be
calculated directly as the total energy difference between two supercells—one for the
FCC and one for the HCP structure. With interlayer relaxations included, we find an
energy difference between the two structures of 37meV/atom = 86 mJm~2/atomic
layer (the energy of the FCC structure being the lower). The relaxation effects are
very small. If the planar and inter-planar distances are kept fixed at the equilibrium
FCC values the energy difference is increased by only 0.8meV/atom ie. by a few
percent.

We determine the stacking fault energies using supercells and therefore have to
pay attention to exclude fault—fault interactions through the periodic boundaries. We
have found a direct extrapolation of the results from larger and larger supercells the
most appealing approach, as it is free from any assumptions of the nature of the
interaction between the faults other than that it falls off smoothly for large fault—fault
separations.

Figure 2 and 3 present the total energy per atom of calculations involving the
three types of faults. The total energies are plotted against N, , where Nyiom 18 the
number of atoms (and layers) per supercell. For N1, = 0 the total energy per atom,
§rcey 8 that of an unfaulted FCC supercell geometry. The total energy of a super
cell can be equated with a term summing £ over all atoms plus a term summing
the fault energy over all faults plus a term describing the total fault-fault interaction
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energy. The energy per atom in the limit where the stacking faults do not interact
can thus be written as:

E/Nalom = fFOC + melllA E{ault/ Natom ’ (1)

where Ny, is the number of faults per supercell and A E,,, is the fault energy.
For geometrical reasons N, = 2 in the calculations involving the twin fault and
N = 1 for the other two faults.
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Figure 2. The (relaxed) total energies per atom  Figure 3. Same as figure 2, but for supercells
for supercells containing two twin stacking faults containing one intrinsic stacking fault (squares) or
plotted against N_'mlm. The slope of the linear one extrinsic stacking fault (triangles).
exirapolation through £pgc for infinitely large

supercells (N:mlm = () gives the twin stacking

fault energy. Open circles indicate calculations for
which the k-point separation perpendicular to the
close-packed planes is 0.0574 A1, the solid circle
indicates a 0.0459 A1 separation. Npgupe_fault i
the number of layers separating two faults.

Figure 2 shows the results for the twin stacking fault for various unit cell sizes.
The points in the figure all fall close to a straight line, equation (1), through
(Nd i EJ Noom)=(0,65cc) for Nil. < 0.25 ie. for separations of the stacking
faults of more than two layers. The deviations away from the straight line for
large separations between the faults is of the size expected due to the finite k-point
sampling. The energy points indicated with open circles in figure 2 are all calculated
for a k-point separation of 0.0574 A-! perpendicular to the close-packed planes and
thus benefit from optimal k-point error cancellation. The point indicated by a solid
circle in the figure has been calculated with a k-point separation of 0.0459A-1, The
energies of the perfect Foc structure (N;;1 = 0) calculated with these two different
k-point densities differ by only 0.3 meV/atom indicating a very good convergence of
the k-space integration perpendicular to the planes. It is also seen that the solid circle
lies close to the line defined by the open circles in the figure. Figure 3 shows similar
results for intrinsic stacking faults (shown as squares in figure 3) and for extrinsic
stacking faults (shown as triangles in the figure).
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By fitting equation (1) to the points for small values of N,L., the energies of
the three stacking faults in the limit of infinite large supercells can be evaluated to
27meV/atom, 69meV/atom and 61 meV/atom for the twin, intrinsic, and extrinsic
stacking faults respectively (the unit ‘meV/atom’ denotes ‘melV per atomic area’,

A = V3al/4 = 7.1 A%, of the interface). The uncertainty in these numbers as
estimated from the extrapolation procedure is around 10%. The effects of interlayer
relaxations on the stacking fault energies are very small. As discussed for the HCP-FCC
structural energy difference the changes in the energies are only of the order of a few
percent and are therefore unimportant in a discussion of the energetics. However,
the relaxations follow a particular pattern which gives some information about the
interatomic interactions near the stacking faults which we shall discuss later.

Table 1 shows the calculated values of the stacking fault energies compared with
other recent theoretical estimates and experimental values. Our results are seen
to be in reasonable agreement with the experimental values. MacLaren er al [1]
used the LKKR method to calculate the twin fault energy [15]. This was calculated
as the difference between self-consistent calculations for two different structures.
Later Crampin et al {2}, still using the LKKR method, took advantage of the force
theorem to avoid iterating to self-consistency and performed a better Brillowin zone
sampling. The LKKR studies do not involve supercells and thus give energies for
isolated stacking faults which do not require extrapolation. Xu et al [3] performed
all-electron LMTO caiculations in the atomic-sphere approximation. They use fault—
fault separations of up to 7 layers, which according to our studies should suffice for
avoiding dominant fault—fault effects. Denteneer and Soler [4] used the APw method
together with an assumed fault—fault interaction form to determine the interaction
terms and from these they obtained estimates for the isolated fault energies. Their
APW calculations only include fault-fault separations up to two layers. Wright et af [5)
in their pseudopotential study used supercells with a separation between the stacking
faults up to 11 layers. They estimated the energies of isolated stacking faults by
averaging over the energies of differently separated faults. As can be seen from the
table all of the calculations except the one by Xu er al [3] agree within what can be
expected from the numerical uncertainty due to the finite basis sets and convergence
in the Brillouin zone integration. There seems t0 be no simple explanation why the
results from the LMTO caleulation [3] do not agree with the others since the basic
asumptions of linearization in energy and the use of the atomic-sphere approximation
are common to some of the other calculations.

Table 1 also includes the results of a set of calculations done with the local,
empirical pseudopotential due to Heine and Abarenkov [16]. This potential has been
used in recent studies [17,18] and gives reasonable values for the equilibrium lattice
constant, the bulk modulus, the cohesive energy and some frozen phonon frequencies
(see [17]; this is also verified in our studies). However, as can be seen from the
table the stacking fault energies calculated with this potential are about a factor two
too small compared with the ab initio results. The former properties are governed
by nearest-neighbour effects. The latter properties, for which the potential fails, are
a result of subtle third-nearest-neighbour changes in atomic environment. We are
therefore led to conclude that the empirical potential is not well suited for studies of
such delicate long-range effects. For a review of stacking fault energies determined
by use of empirical pseudopotentials—see Simon [19].

The quality of the linear fit, equation (1), with the energy points of small N1
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Table 1. Calculated results for the stacking faull energies and the FCc-HCP structural
energy difference compared with other recent ab initio calculations and values derived
from experiments [20]). Also included are the results obtained using the empirical
potential due to Heine and Abarenkov [16].

HcP Twin Intrinsic Extrinsic

(mIm~2fayer) (mIm~?) (mIm~?) (mIm-?)
This work 86 60 156 138
MacLaren et al (1) — 59 — —_
Crampin et al [2] — 56 124 118
Xu et al [3) 178 130 280 260
Dentencer and Soler [4] 71 54 126 108
Wright e al [5] 86 74 161 151
Empirical potential 50 34 66 55
Experimental [20] — 75 166 —

in figure 2, indicates a rather short-ranged fault—fault interaction, and it is therefore
natural to see to what degree a few parameter model can describe these interactions.
We follow the technique used by Cheng et al [21] in their SiC studies and which
was also used for the determination of stacking fault energies by Dentencer ef af [4].
The spin, o,, of the ¢’th layer is defined as 41 or —1 depending on the position of
the i + 1th layer. o, is +1 if the ith and 7 + 1th layers follow the ABC stacking
sequence and —1 if they follow the CBA stacking sequence—see figure 1. The total
energy per atom is then expanded in pairwise interactions between the layers as

E T max 1 Natom
N =§ - Z N Z JpoiOin (2}
atom n=1 " alom ;|

where : denotes the ith Jayer and »n runs from 1 to the maximal range of the
interaction, ng,,.
If we consider only the n = 1 and n = 2 terms the stacking fault energies are:

AEy,=2Ji+4J, AEy,=4J,+4J, AE, =4J +8J,.

If one determines the two parameters, J, and J, from three elementary calculations
of the supercells of ABC, AB and ABCB stacking (these already appear in figure 2
at N;1 =00, 0.5 and 0.25), one gets: J, = 18.65meV and J, = —2.125meV. These
values give 29meV/atom, 66 meV/atom and 58 meV/atom for the twin, intrinsic and
extrinsic stacking fault energies respectively. These numbers derived from supercells
of only up to four layers height correspond well to the values obtained above when
using larger ceils and the extrapolation procedure. We therefore conclude that the
effects of stacking faults are indeed screened out over a few layer distances and
the approach used by Dentencer and Soler [4] where the stacking fault energies are
extracted from calculations on rather small supercells is justified.

We now turn to a discussion of the inter-planar relaxations, In table 2 the relative
changes in the inter-planar separations in % are given for the largest supercells of
figure 2 and 3. The layer separations are defined in figure 1.

The relaxations of the inter-planar separations are generally seen to be very
small i.e. less than one percent in all cases. A general trend that is seen is that the
relaxation of the separation denoted by 1 is about a 0.7% expansion and of separation



Stacking fault energies in aluminium 10459

Table 2. The relative layer scparation changes in %. The separations are defined in
figure 1.

Separation # HCP Twin Intrinsic Extrinsic

0 07 - 0.9 0.1
1 - 07 07 0.6
2 —  -04 0.3 -0.3

2 about a 0.3% compression. The relaxation of separation 0 varies considerably
from the intrinsic to the extrinsic stacking fault, but is an expansion in both cases.
Altogether the relaxations are seen to be consistent with a picture of rather short-
ranged interactions between the layers. According to the Ising model there is an
energy cost of 2J, (neglecting for the moment the smaller J,) associated with a
configuration where two layers of the same type (A, B, or C) are separated by one
other atomic layer. The positive sign of J, therefore indicates that the effective
interaction between one layer and another of the same type two layer separations
away is repulsive. The relaxations show that a repulsive force between two such
layers also exists leading to the expansions. The small contractions of the subsequent
layer separations can at least partly be explained through a push-pull effect: If we
for instance consider the twin stacking fault (figure 1) the C layers next to the central
A layer move away from each other due to the repulsion. However, the subsequent
B layers do not shift rigidly together with the C layers because of the interactions
between the B layers and the central A layer. The distance between the C and B
layers (separation 2 in table 2) will therefore decrease slightly. That the relaxations
of the inter-planar separations can indeed be understood in terms of pairwise layer
interactions is seen by the interesting point that determining the relaxations within a
pair potential model gives the same signs for the relaxations and roughly the same
magnitudes [22).

5. Conclusion

The stacking fault energies for aluminium have been determined using the total
energy pseudopotential method. Supercell effects are controlled by extrapolating the
values of finite size cells to infinite cell sizes. The observed short-ranged fault—fault
interactions are consistent with an Ising model with only two effective interaction
parameters. The relaxations exhibit a systematic pattern related to the effective
interactions between the layers. A comparison with other recent theoretical estimates
and experimental values for the stacking fault energies shows a general agreement
between the different approaches.
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