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Abstract

The use of localized basis sets is essential in linear-scaling electronic structure calculations, and since such basis sets are
mostly non-orthogonal, it is necessary to solve the generalized eigenvalue problemHx = εSx. In this work, an iterative method
for finding the lowest few eigenvalues and corresponding eigenvectors for the generalized eigenvalue problem based on the
conjugate gradient method is presented. The method is applied to first-principles electronic structure calculations within density-
functional theory using a localized spherical-wave basis set, first introduced in the context of linear-scaling methods [Comput.
Phys. Commun. 102 (1997) 17]. The method exhibits linear convergence of the solution, the rate of which is improved by a
preconditioning scheme using the kinetic energy matrix. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Linear-scaling electronic structure methods [1] are
essential for calculations of large systems containing
many atoms. One of the criteria for the success of such
methods is the use of a high quality localized basis set,
which is usually non-orthogonal. Using such a basis
set, one can formulate the electronic structure problem
as a generalized eigenvalue problemHx = εSx [2–
4], which also arises naturally in many other scientific
disciplines. The properties ofH andS are that they
areN ×N Hermitian matrices and thatS is also pos-
itive definite. For the case where only the lowest few
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eigenvalue–eigenvector pairs of largeN matrices are
required, most direct diagonalization (e.g., Cholesky–
Householder procedure) methods which use similar-
ity transformations [2–5] are inefficient because all
eigenvalue-eigenvector pairs are found. The compu-
tational effort scales asN3, whereN is the number
of basis functions in the calculation. Iterative methods
which concentrate on only the lowest few eigenvalue–
eigenvector pairs are much more efficient [6–11], and
are widely used to solve the standard symmetric eigen-
value problem. Iterative solution of the generalized
eigenvalue problem usually proceeds by first perform-
ing a Cholesky decomposition ofS to obtain a stan-
dard symmetric eigenvalue problem. However, in this
work the generalized problem, cast into variational
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form, is solved by the conjugate gradient method with-
out first transforming to symmetric form. The gradi-
ent method was proposed long ago by Hestenes and
Karush [12,13] to solve the eigenvalue problem, where
they used a steepest descent method to perform the
minimization.

In this work, we first present an example of a gener-
alized eigenvalue problem taken from first-principles
electronic structure calculations. An iterative conju-
gate gradient minimization method which finds the
lowest few eigenvalues and eigenvectors is then in-
troduced. Although this method can be used for Her-
mitianH and Hermitian-positive-definiteS, it will be
most efficient whenH andS are also sparse, a case
which arises when large systems are studied with lo-
calized basis sets. We have taken the tensor nature of
the search direction and other quantities into account.
A preconditioning scheme related to that discussed by
Bowler and Gillan in a previous Communication [14]
to improve the convergence is proposed. To test the
method we use a localized spherical-wave basis set in-
troduced in another Communication [15] to perform
first-principles calculations. Test cases are taken from
the molecular chlorine and bulk silicon systems. The
rate of convergence of the solutions is one of our main
concerns here. Linear convergence of the solution is
observed from the results of calculations.

2. Formulation of the problem

We give a brief account of electronic structure cal-
culations within density-functional theory [16] which
requires the generalized eigenvalue problem to be
solved (see Ref. [17] for a more comprehensive de-
scription). For a system ofM electrons, we need
to solve self-consistently the Kohn–Sham equations
which assume the following form

Ĥψm(r ) =
[
− h̄2

2me
∇2+ Veff(r )

]
ψm(r )

= εmψm(r ), (1)

where Ĥ is the Kohn–Sham Hamiltonian, with en-
ergy eigenvaluesεm and corresponding eigenstates
ψm(r ). The effective potentialVeff consists of three
terms; the classical electrostatic or Hartree potential,
the exchange-correlation potential, and the external

potential [17]. The electron density is formed from the
M lowest or occupied eigenstates

ρ(r )=
M∑
m=1

∣∣ψm(r )∣∣2. (2)

The eigenstates satisfy the orthogonality constraints
where∫

dr ψ∗m(r )ψn(r )= δmn, (3)

for all m andn.
When a non-orthogonal basis set{χα(r )} is used,

the eigenstates are written as

ψn(r )=
∑
α

xαnχα(r ), (4)

whereα labels a basis functionχα(r ). The right hand
side of Eq. (4) has been written as a contraction be-
tween a contravariant quantityxn and a covariant
quantityχ(r ). Substituting Eq. (4) into Eq. (1), taking
inner products with the{χα(r )}, and using the defini-
tions

Sαβ =
∫

dr χ∗α(r )χβ(r ), (5)

and

Hαβ =
∫

dr χ∗α(r )Ĥχβ(r ), (6)

we obtain the generalized eigenvalue problem

Hαβx
β
n = εnSαβxβn . (7)

In writing Eq. (7), we have adopted the Einstein
summation notation where we sum over repeated
Greek indices. The orthogonality conditions of the
Kohn–Sham eigenstates in Eq. (3) translate into

x∗αm Sαβxβn = δmn. (8)

When Eq. (7) is solved, a new output electron
density ρ(i)out is obtained and a new input electron
density for the next iteration can be constructed by
a linear (or more sophisticated [18]) mixing scheme,
e.g.,

ρ
(i+1)
in = fρ(i)out+ (1− f )ρ(i)in , (9)

where the optimum choice forf depends upon the
eigenvalues of the static dielectric matrix of the
system. The mixing of densities is carried out until
Eq. (1) is solved self-consistently.
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3. The iterative method

We shall now consider the case of a real, localized,
non-orthogonal basis set, and assume that a real sym-
metric generalized eigenvalue problem is to be solved.
To obtain theM lowest eigenstates, we minimize the
objective functionΩ which is the sum ofM eigenval-
ues (formed by the Rayleigh quotients)

Ω =
M∑
n=1

εn =
M∑
n=1

xαnHαβx
β
n

xαn Sαβx
β
n

, (10)

subject to the orthogonality constraints of Eq. (8).
Ω takes its minimum value when{xi ; i = 1, . . . ,M}
spans the same subspace as theM lowest eigenvectors
of Eq. (7). Even though the procedure given below is
for a single eigenvector update, it can be generalized
easily to anM-eigenvector (or block) update (see
Appendix A).

The derivative ofΩ with respect toxγm is

∂Ω

∂x
γ
m

= 2

(xαmSαβx
β
m)

× [Hγµxµm − εmSγ νxνm]. (11)

Eq. (11) defines a covariant gradient

gnα =Hαµxµn − εnSανxνn. (12)

As pointed out by White et al. [19], it is important to
consider the tensor property of the search direction.
We define the dual basis functionsχα(r ) by the
conditions∫

dr χα(r )χβ(r )= δαβ . (13)

The metric tensorSαβ can be defined in terms of the
dual basis functions where

Sαβ =
∫

dr χα(r )χβ(r ). (14)

It can be shown thatSαβ transforms covariant vectors
into contravariant vectors and thatSαβSβγ = δαγ .
Hence we transform the covariant gradientgnα into
a contravariant gradientgαn by using the metric tensor
Sαβ where

gαn = Sαβgnβ = SαβHβγ xγn − εnxαn . (15)

The contravariant gradient can then be used to update
the eigenvector coefficients in Eq. (4).

The constraints of Eq. (8) can be maintained (to
first order) by ensuring that the search direction
g⊥αn obtained fromgαn is orthogonal to the space
spanned by all the current approximate eigenvectors.
By writing

g⊥αn = SαβHβγ xγn − εnxαn +
∑
m

xαmcmn, (16)

and imposing the requirement thatg⊥n
α
Sαβx

β
m = 0 for

all m andn, we find

cnm = εnδnm − xαnHαβxβm. (17)

We then have

g⊥n
α = SαβHβγ xγn −

∑
m

xαm
(
xµmHµνx

ν
n

)
, (18)

and

g⊥nα =Hαβxβn − Sαβ
∑
m

xβm
(
xµmHµνx

ν
n

)
. (19)

We can use Eq. (18) as the steepest descent direction
for constructing the conjugate gradients. However, the
convergence of the solution depends strongly on the
ratio of the largest and smallest eigenvalues ofH

[14,20]. Since the largest eigenvalues are dominated
by the basis functions with large kinetic energy, we
precondition the search direction using the kinetic
energy matrixT where

Tαβ =− h̄2

2me

∫
dr χα(r )∇2χβ(r ). (20)

We propose to obtain the preconditioned steepest de-
scent directionGαn in the same manner as in Ref. [14]
from the equation

Gαn =
(
S + 1

τ
T

)αβ
g⊥nβ, (21)

which amounts to findingGαn by solving(
S + 1

τ
T

)
αβ

Gβn = g⊥nα. (22)

τ sets the kinetic energy scale for the precondition-
ing: components of the gradient corresponding to basis
functions with kinetic energy much lower thanτ are
unaffected by the preconditioning, whereas the contri-
bution of components with kinetic energy much higher
than τ is suppressed. The limitτ →∞ thus corre-
sponds to the case of no preconditioning, while the ef-
fect of preconditioning becomes stronger asτ → 0.
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Preconditioning which is too aggressive leads to a
degradation of performance, and even the wrong an-
swer being obtained, because it can reorder the lowest
eigenvectors. We discuss the choice ofτ in Section 4.
This preconditioning scheme does not rely on the “di-
agonal approximation” used in Ref. [14], which is ap-
propriate in that case because the overlap between dif-
ferent basis functions is not extensive. One can solve
Eq. (22) by using the standard preconditioned conju-
gate gradient method for linear systems [4,21].

The search direction to be obtained fromGαn is
also required to be orthogonal to all approximate
eigenvectors. By carrying out the same procedure as
in Eq. (16), we find the gradient which is orthogonal
to all approximate eigenvectors is given by

G⊥n
α =Gαn −

∑
m

xαm
(
xβmSβγG

γ
n

)
. (23)

In the conjugate gradient minimization method,G⊥n
α

will be used to construct a conjugate search direction
Dαn where

Dαn =−G⊥n α + γ D̃αn (24)

whereD̃n is Dn from the previous iteration. We give
the expression forγ in the Polak–Ribière formula
where

γ = G⊥n
α
Sαβ(g

⊥
n
β − g̃⊥βn )

G̃⊥αn Sαβg̃
⊥β
n

= G⊥n
α
g⊥n α −G⊥n αg̃⊥nα
G̃⊥αn g̃⊥nα

. (25)

The tilde signs again signify the quantities from the
previous iteration. Line minimization (see Appendix
B) of Ω is then performed along the directionD⊥αn
where

D⊥n
α =Dαn −

∑
m

xαm
(
xβmSβγD

γ
n

)
, (26)

which is orthogonal to all approximate eigenvectors.
We can systematically update each eigenvector se-
quentially until the minimum value ofΩ is found. The
single eigenvector update procedure described above
can be generalized to a block update procedure where
all approximate eigenvectors are updated simultane-
ously. The pseudo-code for the block update procedure
can be found in Appendix A.

4. Tests of the algorithm

In this section, we present the results obtained from
the calculations based on the block update proce-
dure. Test cases are taken from the molecular chlo-
rine and bulk crystalline silicon systems. The lo-
calized spherical-wave basis set [15] is used, where
the basis functions are chosen to be centered on
the atoms. We have used norm-conserving Troullier–
Martins pseudopotentials [22] in the Kleinman–By-
lander form [23], with angular momentum compo-
nents up tol = 2. We use an LDA [24] for the ex-
change and correlation term. Periodicity of the super-
cell is assumed and theΓ point is used for thek-point
sampling.

A chlorine molecule of bond length 2.0 Å is
placed in a cubic box of side 10 Å. With a cutoff
energy of 640 eV and the basis-function radiusR of
4.0 Å, a total of 2× 139= 278 basis functions are
used. In Fig. 1 we display the convergence of the
sum of Kohn–Sham eigenvalues toward the “exact”
value obtained from direct matrix diagonalization, as
a function of the iteration number. The convergence
of solution is seen to be linear when the number
of iterations is smaller than the number of basis
functions. To investigate the effect of preconditioning
on the convergence of the solution, we have used
a number of fixedτ values. It is seen that the
performance of the method improves with moderate
preconditioning. Fig. 1 shows thatτ should be about
10 eV for good convergence. We have performed
another calculation withτ updated according to the
highest kinetic energy of all approximate eigenvectors,
which converges to 24 eV. This is the natural choice
for τ used in other preconditioning schemes, and the
performance of this calculation (the curve labeled by
open diamonds�) is seen to be rather similar to that
of the ‘optimal’ case withτ = 10 eV. This method
therefore allowsτ to be chosen automatically, and
optimized during the calculation, rather than being
another parameter which the user must specify.

To investigate the importance of preserving the ten-
sor nature of the search direction, we have performed
calculations with the same cutoff energy of 640 eV
on the molecular chlorine system, but this time with
S set to the identity matrix (this corresponds to the
case where tensor nature of the search direction is not
preserved) and the off-diagonal elements ofT set to
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Fig. 1. Convergence of the sum of eigenvaluesΩ (eV) as a function of iteration number for the chlorine molecule calculations using a cutoff
energy of 640 eV.Ω0 is the “exact” value from the direct matrix diagonalization. The curve labeled by empty diamonds (�) corresponds to the
calculation whereτ is updated according to the highest kinetic energy of all approximate eigenvectors.

Fig. 2. Convergence of the sum of eigenvaluesΩ (eV) as a function of iteration number for the chlorine molecule calculation using a cutoff
energy of 640 eV. The curves show the difference between the tensor-nature-preserving (TNP) calculations and non-tensor-nature-preserving
(NTNP) calculations.
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Fig. 3. Convergence of the sum of eigenvaluesΩ (eV) as a function of iteration number for the chlorine molecule calculations using a cutoff
energy of 4800 eV.Ω0 is the “exact” value from the direct matrix diagonalization. The curve labeled by empty diamonds (�) corresponds to
the calculation whereτ is updated according to the highest kinetic energy of all approximate eigenvectors.

Fig. 4. Convergence of the sum of eigenvaluesΩ (eV) as a function of iteration number for the 64-atom Si crystal calculations using a cutoff
energy of 200 eV.Ω0 is the “exact” value from the direct matrix diagonalization. The curve labeled by empty diamonds (�) corresponds to the
calculation whereτ is updated according to the highest kinetic energy of all approximate eigenvectors.
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zero (this corresponds to the diagonal approximation
used in Ref. [14]) when we solve Eq. (22). The re-
sults of the calculations are presented in Fig. 2 where
we have included the tensor-nature-preserving (TNP)
curves for comparison. It is found that that the non-
tensor-property-preserving (NTNP) cases fail to con-
verge to the right solution. We conclude that it is es-
sential to take tensor properties into account when one
is dealing with a non-orthogonal basis set.

With a cutoff energy as high as 4800 eV (a total
of 2 × 392= 784 basis functions are used in these
calculations), Fig. 3 clearly indicates that it is crucial
to use the preconditioning scheme. A comparison
between Figs. 1 and 3 reveals that when the optimal
value ofτ is used, the number of iterations to achieve
the same accuracy remains roughly the same, even
though the number of basis functions has more than
doubled, which shows that the preconditioningscheme
is indeed working.

Similar tests are performed on the bulk crystalline
silicon system. The calculations on a 64-atom silicon
unit cell are performed at the equilibrium lattice pa-
rameter of 5.43 Å with an energy cutoff of 200 eV.
We have chosenR to be 3.1 Å which is sufficient
for this purpose. These settings result in a total of
64×55= 3520 basis functions for the calculations. In
Fig. 4 we we note that our ‘best’τ ∼ 1 eV is compara-
ble with the value of 3.8 eV used by Bowler and Gillan
[14]. We have performed another calculation withτ
updated according to the highest kinetic energy of all
approximate eigenvectors, which converges to 12 eV.
The performance of this calculation is seen to be rather
similar to that of the optimal cases withτ = 1 or 10 eV.

5. Conclusions

In this work we have proposed an iterative conjugate
gradient method to obtain the lowest few eigenvalues
and corresponding eigenvectors of the generalized
eigenvalue problemHx = εSx, which exhibits linear
convergence. A preconditioning scheme which uses
the kinetic energy matrix is introduced to improve the
convergence of the solutions. The scheme is controlled
by a single parameter whose optimal value may be
chosen automatically.
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Appendix A

The pseudo-code for solving the generalized eigen-
value problemHx = εSx based on the block update
procedure is as follows, whereH , S andT denote the
N × N Hamiltonian, overlap and kinetic energy ma-
trices, respectively. LetX(k) = [X(k)1 ,X

(k)
2 , . . . ,X

(k)
M ]

be anN ×M matrix whereX(k)i is theith column of
X(k), andk labels the iteration.

The procedure is then:

k := 1
ChooseX(1)

Choose convergence toleranceε
OrthonormalizeX(1) (Gram–Schmidt)
CalculateΩ(1)

ChooseΩ(0) such that|Ω(1)−Ω(0)|> ε
F (0) := 0
A(0) := 0
γ
(0)
1 := 1

while |Ω(k)−Ω(k−1)|> ε do
Y (k) :=HX(k)
Z(k) := SX(k)
P (k) := (X(k))TY (k)
F (k) := Y (k) −Z(k)P (k)
Solve(S + T/τ)B(k) = F (k)
C(k) := (Z(k))TB(k)
G(k) :=B(k) −X(k)C(k)
γ
(k)
1 := tr((G(k))TF (k))
γ
(k)
2 := tr((G(k))TF (k−1))

γ (k) := (γ (k)1 − γ (k)2 )/γ
(k−1)
1

A(k) := −G(k) + γ (k)A(k−1)

E(k) := (Z(k))TA(k)
D(k) :=A(k) −X(k)E(k)
λopt := linmin(X(k),D(k)) (see Appendix B)
X(k+1) :=X(k) + λoptD

(k)
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OrthonormalizeX(k+1) (Gram–Schmidt)
CalculateΩ(k+1)

k := k + 1
end

In some applications, individual eigenvalues are
needed. They can be obtained by a subspace rotation
method where we simply need to diagonalize the
M × M matrix XTHX. If U diagonalizesXTHX

such thatUT(XTHX)U = diag(ε1, ε2, . . . , εM ), we
obtain the individual eigenvalues{εi ; i = 1, . . . ,M}
with corresponding eigenvectorsX′ =XU .

Appendix B

To perform a line minimization from a pointX(k)

along a certain directionD(k), we wish to findλopt,
the optimum value ofλ which minimizes

f (λ)=
M∑
m=1

(X
(k)
m + λD(k)m )TH(X

(k)
m + λD(k)m )

(X
(k)
m + λD(k)m )TS(X

(k)
m + λD(k)m )

. (B.1)

This may be achieved in several ways. First, by

calculating the derivative off at λ = 0, df
dλ

∣∣∣
λ=0

,

taking a trial stepλt to evaluateft = f (λt) and making
a parabolic fit to determineλopt.

Alternatively, since

df

dλ
=

M∑
m=1

2(am + λbm + λ2cm)

(1+ λ2(Dm)TSDm)2
, (B.2)

where

am =
[(
X(k)m

)T
SX(k)m

][(
D(k)m

)T
HX(k)m

]
− [(X(k)m )T

HX(k)m
][(
D(k)m

)T
SX(k)m

]
, (B.3)

bm =
[(
X(k)m

)T
SX(k)m

][(
D(k)m

)T
HD(k)m

]
− [(X(k)m )T

HX(k)m
][(
D(k)m

)T
SD(k)m

]
, (B.4)

cm =
[(
X(k)m

)T
SD(k)m

][(
D(k)m

)T
HD(k)m

]
− [(X(k)m )T

HD(k)m
][(
D(k)m

)T
SD(k)m

]
, (B.5)

we find λopt as one of the roots of the quadratic
equation

a + bλ+ cλ2= 0, (B.6)

wherea =∑mam, etc.
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