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Abstract. By means ofab initio total-energy pseudopotential calculations, the parameters of
the model Hamiltonian fortrans-(CH)x are determined. The structural parameters of the ground
state are obtained by relaxing the positions of the atoms and determining the lowest energy
states for different lattice constants. The results are in agreement with experiments. Then,
applying constraints to the system, we calculate the cohesive energies of dimerization for various
dimerized displacements. Comparing these cohesive energies with those given by the model
Hamiltonian, we determine the effective interaction strengths of the model Hamiltonian. With
the above-mentioned parameters, the localized states of solitons are calculated. We find six
localized soliton modes, three with odd parity and three with even parity. The former and
the latter are, respectively, qualitatively consistent with the Raman and infrared spectra of the
material.

1. Introduction

Conducting and semiconducting polymers are promising candidates as regards use in
future optoelectronic devices and molecular devices. They display unusual magnetic and
optical properties, most of which can be understood in terms of a simple effective model
Hamiltonian [1–3]. Today, model Hamiltonians are widely used for describing the excited
states of conducting polymers and fullerenes, sinceab initio calculations are mainly suitable
for ground states. Conventionally, the parameters in the model Hamiltonian are deduced via
fittings to experimental data. However, experimental results for new materials are generally
scarce and diverse, i.e. the experimental results tend to vary according to the experimental
conditions. In contrast,ab initio calculations can be used to compute the total energy and
other characteristic data of the ground state for any materials without experimental input.
As computers become more powerful, determining the parameters of model Hamiltonians
from ab initio calculations will eventually be more convenient and practicable than getting
them from experiments.

Stollhoff [4], in his work onab initio ground-state calculations with the localansatz,
usedab initio quantum chemistry calculations to obtain the parameters of the Su–Schrieffer–
Heeger (SSH) [1] Hamiltonian.

The SSH model Hamiltonian is a tight-binding model with electron–phonon interactions:

HSSH = He + 1

2
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n
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= −
∑
n,s

[t0 − α(un+1 − un)](a
+
n+1,san,s + HC) + 1

2
K

N∑
n=1

(un+1 − un)
2 (1)

where He is the electronic Hamiltonian;a+
n,s and an,s are the creation and annihilation

operators of an electron on siten with spin s; t0 is the electron hopping constant;α is the
electron–phonon coupling constant;un is the configuration coordinate for displacement of
the nth (CH) unit from the position it is in when all the (CH) units are equally spaced;K

is the elastic constant; andN is the number of (CH) units.
Specifically, Stollhoff [4] fitted the self-consistent-field (SCF) approximation ground-

state energy of the model Hamiltonian to the SCFab initio calculations. However, he
used the empirical tight-binding result for the hopping constantt0 = 2.5 eV as input, and
consequently the bond alternation he obtained deviated from experimental results.

Springborg [5], applying the first-principles linear-muffin-tin-orbital (LMTO) method
to the study of the electronic structure of polyacetylene, estimatedt0 and α of the SSH
Hamiltonian by calculating the hopping integrals as functions of the interatomic distance
and comparing them with the hopping integrals of the SSH model. However, the SSH
Hamiltonian is a 1D model which takes only nearest-neighbour interactions into account and
assumes that the hopping integrals are linearized around the value of the undimerization,
whereas the LMTO Hamiltonian is an approximation to the density functional scheme.
Since the Hamiltonian of the SSH model is different from that of the first-principles LMTO
method, it is not appropriate to compare with them term by term. So, it is not surprising that
the parameterst0 andα which Springborg [5] obtained are somewhat different from those
estimated from the experimental results. The effective interaction strengths in the model
Hamiltonian should be deduced by fitting the data for the ground state obtained from the
model Hamiltonian to the ground-state results for the material obtained from experiments
or ab initio calculations.

Today,ab initio total-energy pseudopotential calculations, performed in the framework
of density functional theory (DFT) and integrated by the pseudopotential approach, allow us
to study systems at the atomic level. These calculations provide an effective and practical
methodology for calculating the total energy of the ground state for any material. Hence, it
is possible to get the parameters of the model Hamiltonian by fitting the ground-state results
of the model Hamiltonian toab initio total-energy pseudopotential calculations, instead of
fitting them to data from experiments, which are, in some cases, becoming more expensive
to obtain than calculated data. In this work, we useab initio total-energy pseudopotential
calculations to obtain the effective interaction strengths of the SSH model Hamiltonian and
the structural parameters of the ground state fortrans-(CH)x . Also the calculated results
are compared with the available experimental data.

2. Computations

The computations were carried out using theab initio pseudopotential approach within
the local density approximation (LDA) [6, 7] of the DFT. The Kohn–Sham equations
were solved by expanding the wavefunctions in terms of a plane-wave basis and directly
minimizing the total energy by using the conjugate-gradient technique [8]. We adopted a
non-local norm-conservingab initio pseudopotential [9] for carbon, particularly constructed
to optimize the softness of the pseudopotential, so the size of the basis set needed to represent
it was minimized. For hydrogen, the Coulomb potential was used. The calculations were
performed on a single (CH)x chain in a supercell since the SSH Hamiltonian is a 1D model.
The distance between chains in neighbouring supercells is larger than 7Å, so the interaction
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of two chains can be neglected. The method of specialk-points [10] was used to perform
the integrations ink-space over the first Brillouin zone. The plane-wave cut-off energy
adopted in our calculations was 700 eV, which gave very good convergence for the total
energy of the ground state, and thus we were able to determine the structural properties
of the ground state correctly. When we performedab initio calculations in this study, we
focused on properties derived from total energies. All of the total-energy calculations were
performed onalpha workstations using the program CASTEP [11].

3. Fitting the parameters

3.1. Structural data for the ground state obtained from ab initio calculations

With the atomic numbers and atomic masses as input, we searched for the the equilibrium
positions of the atoms and the lowest electronic energy states by relaxing the positions of
atoms and changing the size of the unit cell (only the cell edge that is in the direction of
the chain axis). The total energyE(A) of the lowest energy state for any lattice constant
A (in the direction of the chain axis) can be expressed as

E(A) = Eground + 1

2
K(A − Aground)

2 (2)

where Eground and Aground are, respectively, the total energy and lattice constant of the
ground state, andK is the elastic constant.

With the least-squares fit, we gotEground , K andAground simultaneously. In the ground
state, the calculated lattice constant in the direction of the chain axis isAground = 2.443Å,
while x-ray results giveA = 2.455 Å [12] and 2.46Å [13]. The calculated elastic constant
K = 21.540 eVÅ−2, and the experimental value forK quoted in [5] is 21 eVÅ−2.

We obtained the ground state by relaxing the positions of atoms and changing the
lattice constant, and with the method mentioned above. From the calculated ground state,
we obtained thetrans-(CH)x structure as shown in figure 1, on which the angles and unit
cell are marked. The double-bond length is 1.35Å, the single-bond length is 1.42̊A, and
the C–H bond length is 1.10̊A. The corresponding x-ray results [12] are 1.36Å, 1.45 Å,
and 1.09Å, respectively.

In the ground state, the dimerization displacementµ0 is the displacement of a C atom
projected onto the chain axis. From the position of the atoms in the ground state, the
calculated displacement of the dimerizationµ0 is 0.0396Å, whereas an NMR experiment
yields µ0 ' 0.035Å [14], and the x-ray results giveµ0 ' 0.052Å [12] and 0.03Å [13].
The calculated dimerization stabilization energyEdim, which is defined as the total energy
per CH unit of the undimerized structure minus that of the optimized dimerized structure,
is 0.0192 eV.

The experimental results cited here were measured on crystals, while our computations
were performed for an isolated chain. There exist numerous theoretical estimates for the
structural parameters of this material (see [15–21] and references therein). The available
self-consistent LDA calculations also give different calculated values ofµ0 and Edim:
Springborget al [16, 17] foundµ0 = 0.028Å, Edim = 0.056 eV with 11k-points; Mintmire
and White [18] gaveµ0 = 0.016Å, Edim = 0.042 eV with 11k-points andµ0 = 0.009Å,
Edim = 0.006 eV with 41k-points; Ashkenaziet al [19] reportedµ0 = 0, Edim = 0 with
36 k-points; Vogl and Campbell [20] obtainedµ0 = 0.005Å with 15 k-points; Paloheimo
and von Boehm [21] predictedµ0 = 0.01 Å, Edim = 0.007 eV with 20k-points and
µ0 = 0.015 Å, Edim = 0.03–0.04 eV with 11k-points. Our result isµ0 = 0.0396 Å,
Edim = 0.0192 eV with 5k-points, which are (0, 0, 0), (0.125, 0, 0), (0.25, 0, 0), (0.325,
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Figure 1. The structure oftrans-(CH)x with optimized equilibrium positions of atoms. All the
angles are given since the two C–H bonds are not perfectly parallel. The blocks surrounded by
the broken lines are the unit cells in the calculations (a = 2.443 Å, which is optimized;b and
c are fixed atb = 10.0 Å, c = 7.0Å).

0, 0) and (0.5, 0, 0) and whose weights are 0.125, 0.25, 0.25, 0.25 and 0.125, respectively.
Among the above values, ourµ0 is the largest one, while ourEdim is just a medium value.
Two of the features in the calculations are that the space group symmetry is not conserved
during relaxation of the atoms in the unit cell and that the supercell is larger than others’.
So this result implies that removing the constraint of space group symmetry conservation
and isolating the interchain interaction will affect the values ofµ0 andEdim.

3.2. Effective interaction strengths obtained from ab initio calculations

Since the energy zero for the model Hamiltonian is different from that for the first-principles
calculations, we have to compare the dimerization-cohesive energies obtained from the
model Hamiltonian with those obtained from theab initio total-energy pseudopotential
calculations, in order to determine the effective interaction strengths in the model
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Hamiltonian.
In the dimerized state,un+1 = −un = µ and equation (1) can be simplified as follows:

HSSH = −
∑
n,s

[t0 + (−1)n2αµ](a+
n+1,san,s + HC) + 1

2
NK(2µ)2 (3)

whereµ is the displacement of the dimerization.
After dimerization, the reduced Brillouin zone will cover the range ofk-values|k| 6

π/4a. Taking the Fourier transform of the operatorsaodd andaeven at odd and even sites, we
diagonalize the first term of equation (4). Then transforming the second term of equation
(4) again, we get new diagonal and non-diagonal elements. Upon setting the coefficient of
the non-diagonal elements to zero, the analytical solution for the electronic spectra is

E(k) = ±
√

(2t0 cos(2ka))2 + (4αµ sin(2ka))2 (4)

where+ (−) refers to the valence (conduction) band.
The total energy of the model Hamiltonian is a function of dimerization displacement

and equals the electronic energy plus the lattice energy:

E(µ) = 2
∑

|k|61/4a

Ev(k) + 1

2
NK(2µ)2

= −4Na

∫ 1/4a

0
dk

√
(2t0 cos(2ka))2 + (4αµ sin(2ka))2 + 1

2
NK(2µ)2. (5)

The dimerization-cohesive energy, i.e. the variation of the total energy induced by the
dimerization, equals

1E(µ) = E(µ) − E(0). (6)

Whenµ is quite small, equation (7) can be simplified to give

1E(µ) ' −8N

π

(
ln

(
2t0

αµ

)
− 1

2

)
α2µ2

t0
+ 2NKµ2. (7)

We also calculated the dimerization-cohesive energies1E(µ) for various atomic
displacements withab initio total-energy pseudopotential calculations. For this purpose, we
constrained the system in order to define different dimerized displacements. The constraints
were applied in such a way that the hydrogen atoms can relax in all directions, and carbon
atoms might relax only in the plane perpendicular to the constrained direction. Then we
searched for the lowest energy state by relaxing the positions of atoms. The total-energy
differences between the lowest energy state of the constrained system and the ground
state are the dimerization-cohesive energies1E(µ). In this way, a series of values of
1E(µ) were found for various dimerized displacements by usingab initio total-energy
pseudopotential calculations. With the least-squares fit, we obtained an electron hopping
constantt0 = 2.1995 eV and an electron–phonon coupling constantα = 4.1552 eVÅ−1.

4. Applying the above-mentioned parameters in the calculation of localized states of
solitons

With the calculated parameters in hand, we took a ring ofN (CH) units and the configuration

un = (−1)nµ0 tanh

[(
n − N + 1

2

) /
ξ

]
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Figure 2. The electronic wavefunction of the soliton level.

as the initial trial soliton configuration, whereξAground is the soliton width. From the model
Hamiltonian, equation (1), the eigenvalueεµ and the wavefunctionZn,µ are obtained from
the eigenequation

HeZn,µ = εµZn,µ. (8)

The static energy of the system is the electronic energy plus the elastic energy:

E({un}) =
occ∑
µ

εµ({un}) + 1

2
K

N∑
n=1

(un+1 − un)
2. (9)

Using the variational theorem,

δE({un})
δun

= 0 (10)

we obtained the ground state. By using the initial trial soliton configuration

un = (−1)nµ0 tanh

[(
n − N + 1

2

) /
7

]
and solving the simultaneous equations (8)–(10) by numerical iteration, we self-consistently
found the real equilibrium positions{u0

n} of atoms, and the electronic eigenvalues
and wavefunctions of a new ground state—the soliton. This soliton is a 1D domain
wall that separates the two degenerate ground-state structures of the isomers fortrans-
polyacetylene [1].
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A soliton will give rise the localized states in both the electron and phonon level spectra,
since the soliton is a kind of self-localized carrier.

According to the calculated electronic wavefunction of the charged soliton, we found
a localized state in the gap, which is the soliton level located near the midgap. Figure 2
shows the wavefunction of the soliton level. If the zero of energy is at the top of the valence
band, the calculated soliton level is at 0.78 eV. Optical absorption spectra [22] showed that
the soliton level occurs at about 0.7 eV.

To determine the vibrational modes of the soliton, we introduced small deviationsδun

from the equilibrium positions, since the calculated equilibrium positions{u0
n} are the static

configurations of the soliton. In the small-deviation limit, we constructed the vibration
matrix

Vmn = δ2E({un})
δum δun

. (11)

Let the eigenvalues and eigenvectors of matrixV be 3ν andAn,ν :∑
m

VmnAm,ν = 3νAn,ν (12)

where the eigenvectorAn,ν represents the amplitude of thenth atom induced by theνth
vibrational mode. The frequency of theνth vibrational mode is

ων =
√

3ν/M (13)

whereM is the mass of a (CH) unit. By diagonalizingV, we obtained all the vibrational
modes of the soliton. Among these, we found six localized modes (instead of five found
in [23]), whose eigenvectors and frequency values are shown in figures 3 and 4. Figure 4
shows that (a), (c) and (e) modes are of even parity; figure 3 shows that (b), (d) and (f)
modes are of odd parity. The localized mode (f) is the new mode that has not previously
been reported.

For the modes with odd parity, the atom at the centre of the soliton is fixed and the
vibration of the other atoms has inversion symmetry about this centre. Therefore, the electric
dipole moment is zero for the localized modes with odd parity. Hence, the localized modes
(b), (d) and (f) are infrared inactive. Since infrared spectra and Raman spectra tend to be
complementary, the localized modes (b), (d) and (f) are expected to be Raman active. These
three localized modes are qualitatively consistent with the three lines observed in Raman
spectra [2, 24].

The electric dipole moment is non-zero for the localized modes with even parity. So
the localized modes (a), (c) and (e) are infrared active. These three localized modes
are qualitatively consistent with the infrared experiment [25]. However, our calculated
frequencies for the (a), (c) and (e) modes are at 0, 848 cm−1, 898 cm−1; while the
experimental data [25] are 500 cm−1, 1250 cm−1, 1370 cm−1. If we use the parameters of
[1] or [2], the calculated frequencies for infrared-active localized modes are at 0, 798 cm−1,
887 cm−1, or 0, 1092 cm−1, 1225 cm−1. In previous work [23] calculating the infrared
modes using the SSH Hamiltonian, the calculated frequencies were 0,1341 cm−1, 1392 cm−1

when using somewhat artificial parameters [23]. These data show that it is an intrinsic
problem of SSH model Hamiltonian that the calculated frequencies of localized modes are
quantitatively inconsistent with the experiment. It also implies that we should adopt more
accurate methods, i.e.ab initio calculations, to achieve quantitative agreement with the
experimental results.

From figures 3 and 4 we can see that, if one wishes to obtain localized soliton modes
by ab initio calculation, one should choose a large enough cluster—at least large enough to
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Figure 3. The localized modes (b), (d) and (f) with odd parity. The abscissa represents the
atomic position and the ordinate represents the atom’s displacement induced by the mode. The
frequency values are 734 cm−1, 880 cm−1, 937 cm−1.

include 101 (CH) units in the chain direction. On considering the increase of cpu time and
memory with the increase of the number of atoms, it is clear that a powerful computer would
be needed for such a calculation. Since thisab initio study only involves the dimerized
state, there are only two (CH) units in a supercell. Thus, an average workstation is perfectly
acceptable.
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Figure 4. The localized modes (a), (c) and (e) with even parity. The abscissa represents the
atomic position and the ordinate represents the atom’s displacement induced by the mode. The
frequency values are 0, 848 cm−1, 898 cm−1.

In summary, with no experimental input, we have obtained the structural parameters
of the ground state and the effective interaction strengths of the model Hamiltonian. The
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structural parameters of the ground state are in agreement with relevant experiments. And
with the above-mentioned parameters, the calculated localized states of the soliton are in
qualitative agreement with the available experimental data.
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