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Norm-Conserving Pseudopotentials

Electron-ionic core interactions are typically represented by a nonlocal Norm-
Conserving Pseudopotential (NCPP): a soft potential for valence electrons only
(core electrons disappear from the calculation) having pseudo-wavefunctions
containing no “orthonormality wiggles”

In many systems, NCPP’s allow accurate calculations with moderate-size (Ec ∼
10− 20Ry) plane-wave basis sets



Empirical Pseudopotentials

Early empirical PPs: fitted to some known experimental data (band gaps, ionization
potentials, etc.). A classical example: Cohen-Bergstresser PPs for diamond and
zincblende semiconductors.

Cohen-Bergstresser PPs are given as a few Fourier components V (G) of the crystal
potential for the fcc lattice. The band structure is obtained by diagonalizing
H = T + V on a small PW basis set:

〈k + G|T + V |k + G′〉 =
h̄2

2m
(k + G)2δGG′ +

∑
µ

Sµ(G−G′)Vµ(G−G′)

Simple and useful but little more than a parameterization of the band structure.



Atomic Pseudopotentials

Early atomic , transferrable PPs for self-consistent calculations:

V (r) = −e2
∫

n0(r′)
|r− r′|

dr′ +
(
v1 + v2r

2
)
e−αr2

Appelbaum and Hamann (1973) Silicon, where:

n0(r) = Zv

(α
π

)3
2
e−αr2

is assumed to be the ionic electron (pseudo) charge-density distribution (Zv =
number of valence electrons). May also be written as

V (r) = −Zve
2erf(

√
αr)
r

+
(
v1 + v2r

2
)
e−αr2

Able to reproduce the band structure of crystalline Si, but also useful in other
calculations. Still lacking a first-principle derivation.



Fourier transform for Appelbaum-Hamann PP:

V (G) =
1
Ω

∫
e−iG·rV (r)dr = −4πZve

2

ΩG2
e−

G2

4α +
1
Ω

(π
α

)3
2

[
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v2
α

(
3
2
− G2

4α

)]
e−
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4α

The G = 0 term is divergent, but its divergence is compensated by the divergence
in the Hartree term:

〈k + G|VH|k + G′〉 =
1
NΩ

∫
e−i(G−G′)·rVH(r)dr = 4πe2

n(G)
G2

where n(r) is the self-consistent charge,

VH(r) =
∫

n(r′)
|r− r′|

dr′.

Note that n(G = 0) = (
∑
Zv)/Ω. Consider the case of one atom per unit cell for

simplicity:

lim
G→0

(
4πZve

2

ΩG2
+ V (G)

)
=
πe2Zv

Ωα
+

1
Ω

(π
α

)3
2

(
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3
2
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)
.



Norm-Conserving Pseudopotentials:

Norm-Conserving, DFT-based PPs were introduced by Hamann, Schlüter, Chiang
in 1979. For a given reference atomic configuration, they must meet the following
conditions:

• εps
l = εae

l

• φps
l (r) is nodeless

• φps
l (r) = φae

l (r) for r > rc

•
∫

r<rc

|φps
l (r)|2r2dr =

∫
r<rc

|φae
l (r)|2r2dr

where φae
l (r) is the radial part of the atomic valence wavefunction with l angular

momentum, εae
l its orbital energy. The core radius rc is approximately at the

outermost maximum of the wavefunction.



All-electron vs Pseudowavefunctions:



Features of Norm-conserving Pseudopotentials:

+ transferrable: their construction ensures that they reproduce the logarithmic
derivatives, i.e., the scattering properties, of the true potential in a wide range
of energies. See the identity

−2π
[
(rφ(r))2

d

dε

(
d

dr
lnφ(r)

)]
rc

= 4π
∫ rc

0

|φ(r)|2r2dr

valid for any regular solution of the Schrödinger equation at energy ε.

– non local: there is one potential per angular momentum:

V ps(r) =
∑

l

Vl(r)|l〉〈l|.

Traditionally PPs are split into a local part, long-ranged and behaving like −Zve
2/r

for r →∞, and a short-ranged semilocal term:

V̂ ps = V̂loc+ V̂SL, V̂loc ≡ Vloc(r), V̂SL ≡
∑
lm

Vl(r)δ(r−r′)Ylm(r̂)Y ∗
lm(r̂′),



All-electron vs Pseudo logarithmic derivatives:



Generation of norm-conserving Pseudopotentials:

1. From an all-electron self-consistent DFT calculation in an atom with a given
reference configuration, calculate φat

l and εat
l , by solving the radial Kohn-Sham

equation. In the non relativistic case:

− h̄2

2m
d2φl(r)
dr2

+

(
h̄2

2m
l(l + 1)
r2

+ V (r)− εl

)
φl(r) = 0 (1)

2. Generate φps
l for valence states that obey norm-conservation conditions, and

invert the Kohn-Sham equation at εps
l to get Vl(r) (or, generate a Vl(r) in such

a way that φps
l and εps

l obey norm-conservation conditions)



3. Unscreen Vl(r) by removing valence contribution to Hartree and exchange-
correlation potentials:

V ps
l (r) = Vl(r)− VH(nps(r))− Vxc(nps(r))

where nps(r) is the atomic valence charge density (assumed to be spherical):

nps(r) =
1
4π

∑
l

fl|φps
l (r)|2

(fl is the occupancy of state with angular momentum l).



Desirable characteristics of a Pseudopotential:

• Transferability: can be estimated from atomic calculations on different
configurations. In many cases simple unscreening produces an unacceptable
loss of transferability. May require the nonlinear core correction:

V ps
l (r) = Vl(r)− VH(nps(r))− Vxc(nc(r) + nps(r))

where nc(r) is the core charge of the atom (Froyen, Louie, Cohen 1982)

• Softness: atoms with strongly oscillating pseudo-wavefunctions (first-row
elements, elements with 3d and 4f valence electrons) will produce hard PPs
requiring many PWs in calculations. Larger core radius means better softness
but worse transferability. Various recipes to get optimal smoothness without
compromising transferability: Troullier and Martins (1990), Rappe Rabe Kaxiras
Joannopoulos (1990)



• Computational efficiency: NCPP’s in the semilocal form are not ideal from this
point of view. Calculation of V̂SLψ in plane waves:

(V̂SLψ)(G) =
∑
G′

〈k + G|V̂SL|k + G′〉ψ(G′)

requires O(N2) floating point operations per band, plus O(N2) storage, where
N is the number of plane waves.



Matrix elements of the semilocal part between plane waves

〈k + G|V̂SL|k + G′〉 =
1
Ω

∑
lm

∫
e−i(k+G)·rYlm(r̂)Vl(r)Y ∗

lm(r̂′)δ(r − r′)ei(k+G′)·r′drdr′

(for one atom at r = 0). Using the expansion of plane waves into spherical Bessel
functions jl:

eiq·r = 4π
∑

l

iljl(qr)
∑
m

Y ∗
lm(q̂)Ylm(r̂)

one gets:

〈k + G|V̂SL|k + G′〉 =
4π
Ω

∑
l

(2l + 1)Pl(k1 · k2)
∫
r2jl(k1r)Vl(r)jl(k2r)dr

where k1 = k + G, k2 = k + G′, Pl(x) = Legendre polynomials.



Separable (Kleinman-Bylander) form of pseudopotentials

It is very convenient to recast NCPP’s into a separable, fully nonlocal form:

V̂ ≡ Vloc(r) +
∑
nm

|βn〉Dnm〈βm|

Introduce the following transformation, proposed by Kleinman and Bylander (KB):

V̂ ps → V̂KB = V̂ ′
loc + V̂NL

where:

V̂NL =
∑
lm

|V ′
l φ

ps
lm〉〈V ′

l φ
ps
lm|

〈φps
lm|V ′

l |φ
ps
lm〉

≡
∑
lm

vl|βlm〉〈βlm|,

V ′
l (r) = Vl(r) − V0(r), V̂ ′

loc ≡ Vloc(r) + V0(r), and V0(r) an arbitrary function.
The |φps

lm〉 are the atomic pseudo-wavefunction (including angular term) for the
reference state.

The separable form is an approximation if applied to a NCPP generated using
the Hamann-Schlüter-Chiang procedure: on the reference state, V̂KB|φps

lm〉 =
V̂ ps|ψps

lm〉; on states not too far from the reference state, V̂KB|φlm〉 ' V̂ ps|ψl〉.



Why the separable form?

The separable form usually yields good results, but may badly fail in some cases
due to the appearence of ghosts: states with a wrong number of nodes.

Separable pseudopotentials are computationally much more efficient than the
conventional (semilocal) form. The calculation of V̂NLψ in plane waves:

(V̂NLψ)(G) =
∑
G′

〈k + G|V̂NL|k + G′〉ψ(G′) =
p∑

i=1

viβi(G′)
∑
G′

β∗i (G′)ψ(G′)

requires only O(pN) floating point operations per band and O(pN) storage, where
p is the number of projectors in the system.

〈k + G|V̂KB|k + G′〉 =
1
Ω

∑
lm

1
〈φps

l |V ′
l |φ

ps
l 〉

∫
e−i(k+G)·rV ′

l (r)φps
l (r)Ylm(r̂)dr

×
∫
ei(k+G′)·r′V ′

l (r′)φps
l (r′)Y ∗

lm(r̂′)dr′

(for one atom at r = 0).



Using the expansion of plane waves into spherical Bessel functions one gets:

〈k + G|V̂KB|k + G′〉 =
4π
Ω

∑
lm

1
〈φps

l |V ′
l |φ

ps
l 〉
Ylm(k̂1)

∫
r2jl(k1r)V ′

l (r)φps
l (r)dr

× Y ∗
lm(k̂2)

∫
r2jl(k2r)V ′

l (r)φps
l (r)dr.

where k1 = k + G, k2 = k + G′.



Direct generation of norm-conserving pseudopotentials in separable form

Pseudopotentials can be directly produced in separable form (Vanderbilt 1991).

– generate a local potential Vloc(r) such that Vloc(r) = V (r) for r > rL; Vloc(r)
for r < rL can be any smooth regular function

– generate atomic waves |φi〉: regular solutions of the KS equations, not necessarily
bound, at a given energy εi. There may be more than one such waves per
angular momentum: this increases the transferability.

– generate the corresponding pseudowaves |φ̃i〉, such that φ̃i(r) = φi(r) for
r > rc,i

– generate the corresponding functions |χi〉 (vanishing for r > rc,i):

|χi〉 = (εi − T − Vloc)|φ̃i〉;



– generate the projectors |βj〉:

|βi〉 =
∑

j

(B−1)ij|χj〉.

where Bij = 〈φ̃i|χj〉 and |βj〉 satisfy 〈βi|φ̃j〉 = δij.

PP’s generated in this way are equivalent to Hamann-Schlüter-Chiang NCPP’s
with KB transformation, if there is only one projector per l, generated using the
bound state φ̃i ≡ φps

l .



Limitations of norm-conserving pseudopotentials

NCPP’s are still “hard”and require a large plane-wave basis sets (Ec > 70Ry) for
first-row elements (in particular N, O, F) and for transition metals, in particular
the 3d row: Cr, Mn, Fe, Co, Ni, ...

Even if just one atom is “hard”, a high cutoff is required. This translates into large
CPU and RAM requirements. Ultrasoft (Vanderbilt) pseudopotentials (USPP) are
devised to overcome such a problem:

3d pseudo- and all-electron
orbitals for Cu (Laasonen et al,
Phys. Rev. B 47, 10142 (1993))



Ultrasoft pseudopotentials

V̂US ≡ Vloc(r) +
∑
lm

Dlm|βl〉〈βm|

Charge density with USPP:

n(r) =
∑

i

|ψi(r)|2 +
∑

i

∑
lm

〈ψi|βl〉Qlm(r)〈βm|ψi〉

where the Qlm (“augmentation charges”) are:

Qlm(r) = φ∗l (r)φm(r)− φ̃∗l (r)φ̃m(r)

|βl〉 are “projectors”
|φl〉 are atomic states (not necessarily bound)

|φ̃l〉 are pseudo-waves (coinciding with|φl〉 beyond some “core radius”)



In practical USPP, the Qlm(r) are pseudized. The matching radii rc may be set to
larger values than for NCPP without loss of transferability.

Orthonormality with USPP:

〈ψi|S|ψj〉 =
∫
ψ∗i (r)ψj(r)dr +

∑
lm

〈ψi|βl〉qlm〈βm|ψj〉 = δij

where qlm =
∫
Qlm(r)dr



Ultrasoft pseudopotentials and PAW

Projector Augmented Waves (PAW) method: P. E. Blöchl, PRB 50, 17953 (1994)

A linear transformation T̂ connects “true” orbitals |ψi〉 to “pseudo” orbitals |ψ̃i〉:

|ψi〉 = T̂ |ψ̃i〉 = |ψ̃i〉+
∑

l

(
|φl〉 − |φ̃l〉

)
〈βl|ψ̃i〉

where |φl〉 = “true” atomic states, |φ̃l〉 = pseudo-waves and

〈βl|φ̃m〉 = δlm ⇒ T̂ |φ̃l〉 = |φl〉.

The pseudo-orbitals are the variational parameters of the calculation.

Assuming that in the core region:

|ψ̃i〉 '
∑

l

|φ̃l〉〈βl|ψ̃i〉

we recover the USPP expression for the charge density n(r).

The PAW procedure can be used to reconstruct all-electron orbitals from pseudo-
orbitals



Ultrasoft pseudopotential generation:

– generate a local potential Vloc(r) such that Vloc(r) = V (r) for r > rL

– generate the pseudowaves |φ̃i〉 such that φ̃i(r) = φi(r) for r > rc,i

– generate a set of functions |χi〉 (vanishing for r > rc,i):

|χi〉 = (εi − T − Vloc)|φ̃i〉

– generate the projectors |βj〉:

|βi〉 =
∑

j

(B−1)ij|χj〉.

where Bij = 〈φ̃i|χj〉 and |βj〉 satisfy 〈βi|φ̃j〉 = δij

– define (pseudized) augmentation functions Qjk:

Qjk(r) = φ∗j(r)φk(r)− φ̃∗j(r)φ̃k(r)



– define Dij = Bij + εjQij, where

Qij =
∫

r<rc,i

(
φ∗i (r)φj(r)− φ̃∗i (r)φ̃j(r)

)
dr

– “unscreen” Dij and Vloc:

D0
ij = Dij−

∫
Qjk(r)Vloc(r)dr, V ion

loc (r) = Vloc(r)−
∫
dr′

n(r′)
|r− r′|

−Vxc(r),

The pseudo-potential is finally given by

VUS = V ion
loc +

∑
ij

D
(0)
ij |βi〉〈βj|,

the charge density by

n(r) =
∑

i

|φi(r)|2 +
∑
jk

Qjk(r)〈φi|βj〉〈βk|φi〉.



Plane-waves + Ultrasoft pseudopotential calculations

• there are additional terms in the charge density and in the forces

• electronic states are orthonormal with an overlap matrix S: 〈ψi|S|ψj〉 = δij

• if the ”augmentation charges” are evaluated in G-space, a different (larger)
cutoff for them may be required

Various tricks: ”box grids”, r-space evaluation, allow to minimize the CPU time
required by additional USPP-specific terms


