

GIPAW: Applications to Organic Materials

Jonathan Yates

jonathan.yates@materials.ox.ac.uk

Materials Modelling Laboratory, Oxford Materials

Oxygen-17 NMR

Ray Dupree (Warwick)

¹⁷O MAS Glutamic Acid . HCl

Oxygen-17 NMR

Ray Dupree (Warwick)

¹⁷O MAS Glutamic Acid . HCl

Oxygen-17 NMR

Ray Dupree (Warwick)

¹⁷O MAS Glutamic Acid . HCl

Site	Calculation			Experiment		
	$\delta_{iso}(ppm)$	C _Q (MHz)	η_Q	$\delta_{iso}(pm)$	C _Q (MHz)	η_Q
01	177.6	7.72	0.22	172.5	7.45	0.25
02	316.9	8.61	0.12	322	8.16	0.0
03	311.0	8.90	0.23	315	8.31	0.17
04	198.0	8.13	0.21	187	7.49	0.25

Extended to wide range of amino-acids

Combined first-principles computational and experimental multinuclear solid-state NMR investigation of amino acids Gervais, C; Dupree, R; Pike, KJ; Bonhomme, C; Profeta, M; Pickard, CJ; Mauri, F, J. Phys. Chem. A, 109 (31), 6960 -6969, 2005.

Oxygen-17 NMR Future Perspectives

Transmembrane proteins

¹⁷O-[Ala12]-WALP23 synthetic peptide

 Chemical shift decreases ~1200ppm/Å with C=O bond length

Solid-State ¹⁷O NMR as a Probe for Structural Studies of Proteins in Biomembranes V. Lemaitre, M.R.R. de Planque, A.P. Howes, M.E. Smith, R. Dupree, A. Watts J. Am. Chem. Soc.; 2004; 126(47); 15320

GIPAW: Zurich 2009 Jonathan R. Yates

Maltose

anhydrous a-maltose: H4' proton

 $\delta_{iso}(^{1}H; cryst) = 3.66 \text{ ppm}$

 $\delta_{iso}(^{1}H; mol) = 1.76 \text{ ppm}$

$$\Delta \delta_{iso}(^{1}H; mol to crys) = 1.90 ppm$$

Intermolecular "Weak" Hydrogen bonds

Correlation between a large calculated $\Delta \delta_{iso}(^{1}H; mol to crys)$ and a short H...O intermolecular distance (<2.7) and a CHO bond angle greater than 130 degrees

Yates et-al J. Am. Chem. Soc. 127 10216 (2005) GIPAW: Zurich 2009 Jonathan R. Yates Uracil

Isolate H-bonding from ring currents

Doner	Δδ(Mol-Xal)
N-H	5.1
N-H	5.4
C-H	2.0
C-H	2.2

J. Am. Chem. Soc. 130 945 (2008)

NMR Crystallography

Regulatory requirement to identify polymorphic forms of new pharmaceuticals

4-Methyl-2-nitroacetanilide (MNA)

Two molecules in Asymmetric Unit

Robin K. Harris, Sian A. Joyce, Chris J. Pickard, Sylvian Cadars and Lyndon Emsley Phys. Chem. Chem. Phys., 2006, 8, 137

NMR Crystallography

Elodie Salager, Robin S. Stein, Chris J. Pickard, Benedicte Elena and Lyndon Emsley Phys. Chem. Chem. Phys., 2009, 11, 2610

Chris J. Pickard, Elodie Salager, Guido Pintacuda, Benedicte Elena, and Lyndon Emsley, J. Am. Chem. Soc., 129 (29), 8932 -8933, 2007

N_∕N−R

DNA bases

Steven Brown (Warwick)

¹⁷O - ¹⁵N J-couplings

Steven Brown (Warwick)

Observing ¹⁵N spin-echo

 $\begin{array}{cccc} {}^{2h}J_{NO} & \text{Expt} & \text{Calc} \\ N1\text{-}O4\text{:}~6.7\pm0.4 \ \text{Hz} & 6.1 \ \text{Hz} \\ N3\text{-}O4\text{:}~4.8\pm0.5 \ \text{Hz} & 4.6 \ \text{Hz} \end{array}$

²J_{NN} N1-N3: 2.7± 0.1 Hz 2.7 Hz

Observing ¹⁷O spin-echo

²J_{ON} O4-N1/3: 5.1± 0.5 Hz 5.4 Hz

J. Am. Chem. Soc. 131 1820 (2009)

Alpine-NMR 2009 Jonathan R. Yates

Intra-molecular H-bonds

	2hJN9N	1 B B B B C B C C C C C	Ste 2hJNs	even Brown (Warv N1	vick)
	Pyrr	ole (A)	Triaz	ole (B)	
	^{2h} J _{N9N1}	¹ J _{N9N1′}	^{2h} J _{N9N1}	¹ J _{N9N1′}	
Calculation[7]	8.1	-9.8	7.4	-11.4	
Experiment[6]	8.0±0.3	10.2±0.4	7.2±0.1	12.0±0.1	

J. Am. Chem. Soc., 130, 12663 (2008)

Effect of Crystal Lattice

full crystal

isolated molecule

Intra-molecular H-bonds

	^{2h} J _{N9N1}	$^{1}J_{N9N1^{\prime}}$	
Solid-state	8.1	-9.8	J computed for a perfect crystal of (A)
Electrostatic	0.5	0.4	change in J due to effect of crystal lattice (isolated molecule at crystal geometry)
Structural	1.2	0.0	change in J due to subsequent relaxation of isolated molecule
Molecular	9.8	-9.4	J computed for isolated molecule (in vacuum)

Intra-molecular H-bonds

	^{2h} J _{N9N1}	$^{1}J_{N9N1^{\prime}}$	
Solid-state	8.1	-9.8	J computed for a perfect crystal of (A)
Electrostatic	0.5	0.4	change in J due to effect of crystal lattice (isolated molecule at crystal geometry)
Structural	1.2	0.0	change in J due to subsequent relaxation of isolated molecule
Molecular	9.8	-9.4	J computed for isolated molecule (in vacuum)
Solution- state	9.0	10.3	Experimental result (note: systematic 0.9 Hz error due to neglect of solvation)

J. Am. Chem. Soc., 130, 12663 (2008)