

An introduction to Solid State NMR and its Interactions

High Resolution NMR

CECAM Tutorial – September 2009 Calculation of Solid-State NMR Parameters Using the GIPAW Method

Thibault Charpentier - CEA Saclay

thibault.charpentier@cea.fr

High Resolution NMR

Magic Angle Sample Spinning

Magic Angle Sample Spinning

 $\overline{A}(\theta_{M}) = 0 \quad \overline{\tilde{A}(t)} = 0$

Like Brownian motion, a *coherent motion* can average NMR interaction to zero

Coherent Averaging

MAS at work I=1/2

Proton decoupling is necessary (sample rotation + spin rotation !)

The NMR Laboratory

torturing probe...

Superconducting magnet

MAS probe

MAS Rotor

The MAS NMR signal in theory

Time dependent Hamiltonian & frequencies $\omega_{m,m+1} = \langle m+1 | \hat{H}(t) | m+1 \rangle - \langle m | \hat{H}(t) | m \rangle$

The MAS NMR signal in theory

Time-dependent transitions frequencies:

$$s(t) \propto \sum_{m} \left| \left\langle m + 1 | I_{+} | m \right\rangle \right|^{2} \times \exp \left(-i \int_{0}^{t} \omega_{m,m+1}(u) du \right)$$

$$\omega_{m,m+1}(\alpha,\beta,\gamma) = \omega_0(\alpha,\beta) + \sum_{p\neq 0} \omega_p(\alpha,\beta) \exp\left[-ip(\omega_{ROT}t+\gamma)\right]$$

Origin of the spinning sidebands

$$\int d\gamma \exp\left\{-i\int_{0}^{t}\omega_{m,m+1}(u)\,du\right\}=e^{-i\omega_{0}t(\alpha,\beta)}\times\sum_{p}\left|I_{p}(\alpha,\beta)\right|^{2}e^{-ip\omega_{ROT}t}$$

 $\omega_0(\alpha,\beta)$: MAS lineshape

 $|I_k(\alpha, \beta)|^2$: positive spinning sidebands

MAS NMR of quadrupolar nuclei

MAS NMR of quadrupolar nuclei

MAS at work ²³Na I=3/2

MAS NMR of quadrupolar nuclei

Central transition for half integer quadrupolar nuclei (I=3/2, 5/2, 7/2, 9/2 ...)

High Resolution MAS NMR of quadrupolar nuclei

Double Rotation (1)114 DOR (1)(1)

2:1 mixture of Na₂SO₄ and Na₂C₂O₄

High Resolution MAS NMR of quadrupolar nuclei

Multiple Quantum MAS MQMAS - 2D NMR

Indirection detection of a multiple quantum transition

MQMAS (2D NMR) in theory $s(t_1, t_2) = \exp(-i\nu_{3Q}t_1) \times \exp(-i\nu_{1Q}t_2) = \exp\{-i\phi(t_1, t_2)\}$

Coherence is not lost !

Total accumulated phase of the signal $\phi(t_1, t_2) = v_{3Q}t_1 + v_{1Q}t_2$

$$v_{3Q}t_1 = a_0(3Q)t_1 + a_4(3Q)G_4(\Omega)t_1$$

 $v_{1Q}t_2 = a_0(1Q)t_2 + a_4(1Q)G_4(\Omega)t_2$

 $a_4(3Q)t_1 + a_4(1Q)t_2 = 0$

Cancellation of the anisotropic contribution: refocusing $s(t_1, t_2) \xrightarrow{2D \text{ FT}} s(v_1, v_2)$ 2D FID 2D Spectrum

MQMAS at work ⁸⁷*Rb* I=3/2

NMR of paramagnetic materials

NMR parameters: DFT vs Experiment

Quadrupolar parameters (I>1/2) (MHz) C_o , η_o

Isotropic Chemical shift (ppm) δ_{iso}

Chemical shift anisotropy (ppm) δ_{CSA} , η_{CSA}

Relative orientation
of CSA PAS in Quad. PAS $\left(\alpha_{CSA,Q}, \beta_{CSA,Q}, \gamma_{CSA,Q}\right)$
(Three Euler angles)

Isotropic J couplings (1-3 bonds) ${}^{(1)}J_{Si-O} {}^{(2)}J_{Si-O-Si}$

Many 1D-2D NMR approches

STATIC, MAS, MQMAS, STMAS, DOR, DAS, MQDOR ...

