Glass Structure and First-Principles NMR

Thibault Charpentier

CEA / IRAMIS / SIS2M / LSDRM

CECAM Tutorial - September 2009

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

Glass: a Nuclear Waste Storage Material

Long term behavior studies: structure and alteration

Thibault Charpentier First Principles NMR of Glass - CECAM Tutorial 2009

R7T7 & SON68 Glasses

A complex borosilicate glass comprising more than 30 oxides

oxide	% (w)
²⁹ SiO ₂ ²⁷ Al ₂ O ₃ ¹¹ B ₂ O ₃ ^{6,7} Li ₂ O ²³ Na ₂ O ⁴³ CaO	45.12 4.87 13.92 1.97 9.78 4.01
ZrO ₂	0.99
ZnO Fe ₂ O ₃ P ₂ O ₅ NiO Cr ₂ O ₃	2.48 2.89 0.28 0.41 0.50
Fission Products	10.35
Actinides	0.89
Platinoides	1.54

For Solid State NMR studies: Simplified Composition 3-8 oxides NMR Probes

 $^{11}\mathsf{B} \ ^{27}\mathsf{AI} \ ^{29}\mathsf{Si} \ ^{23}\mathsf{Na} \ ^{43}\mathsf{Ca} \ ^{6,7}\mathsf{Li} \ ^{17}\mathsf{O}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

NMR Structural studies

Probing the glass structure at the atomic scale

- Glass accommodates the elements present in the spent fuel
- FP atoms are an integral part of the glass

Thibault Charpentier

First Principles NMR of Glass - CECAM Tutorial 2009

CEA / IRAMIS / SIS2M / LSDRM

Solid State Nuclear Magnetic Resonance Spectroscopy

Boron speciation in borosilicate glass

CEA / IRAMIS / SIS2M / LSDRM

Solid State Nuclear Magnetic Resonance Spectroscopy

Heavy Ion Damage: amorphisation of amorphous material ?

Thibault Charpentier

Oxygen Speciation in borosilicate glass

Reading the silicate network structure

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

Oxygen Speciation in borosilicate glass

Reading the silicate network structure

Modeling and Quantifying ¹⁷O MQMAS Spectroscopy

Quantification & NMR Distribution

F. Angeli, T. Charpentier et al. JNCS 2008

IRAMIS

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

CEA / IRAMIS / SIS2M / LSDRM

Oxygen Speciation in borosilicate glass

Reading the silicate network structure

F. Angeli, T. Charpentier et al., JNCS 2008

Thibault Charpentier

IN/MINIES

CEA / IRAMIS / SIS2M / LSDRM

Oxygen Speciation in borosilicate glass

Quantifying the glass network structure

Glass Topology

- Bridging Oxygen Atoms: Si-O-Si, Si-O-B, B-O-B Glass homogeneity at nanoscale
- Non Bridging Oxygen: Si-O⁻Na⁺ Glass Polymerization degree
- Non Bridging Oxygen: Si-O⁻(Na⁺,Ca⁺⁺)
 Evidence of a Mixed Alkali -Alkaline Earth Effect

Thibault Charpentier

Quantifying glass topological disorder

Glass Topology

- Reconstruction of the NMR parameter distribution Π
- Correlating the *local disorder* to the NMR spectrum line shape ?
- $\Pi(NMR) \Rightarrow \Pi(Structure)$?

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

NMR of disordered Materials

Modeling and Interpreting

Thibault Charpentier

CEA / IRAMIS / SIS2M / LSDRM

Understanding NMR / Structure relationships

Quantum Mechanical calculations: the Cluster Approach

CEA / IRAMIS / SIS2M / LSDRM

Combining MD simulations with fp NMR calculations GIPAW: C.J. Pickard & F. Mauri, PRB 2001

Thibault Charpentier

The GIPAW method

Gauge Including Projector Augmented Wave

C.J. Pickard & F. Mauri, PRB 2001

- DFT using GGA (PBE) or LDA functionals.
- Plane Waves Expansion (e^{-ik.r})
 - 3D FFT, Parallel Code
 - Periodic Boundary Conditions
- Pseudopotential approximation of core electrons
- GI-PAW
 - PAW: Reconstruction of the wave function *at* the nucleus
 - Gl: Gauge Invariance

Exp.: Spearing et al. Phys. Chem. Minerals 1992.

CEA / IRAMIS / SIS2M / LSDRM

Accuracy: GIPAW outperforms all previous approaches

Thibault Charpentier

Molecular Dynamics

MD-GIPAW Methodology

MD: Collaboration S. Ispas, P. Kroll, G. Ferlat, F. Mauri, J.M. Delaye

CEA / IRAMIS / SIS2M / LSDRM

æ

Thibault Charpentier

The controversy: Bond Angle Distribution in vitreous silica

Revisiting the interpretation of ¹⁷O NMR data

PHYSICAL REVIEW B 70, 064202 (2004)

Correlated structural distributions in silica glass

Ted M. Clark and Philip J. Grandinetti⁴ Department of Chemistry: The Ohio State University, 120 West 18th Avenue, Columbus, Ohio 43210-1173, USA

> Pierre Florian CNRS-CRMRT, 1D Av. de la Recherche Scientifique, 45071 Orléans Cedex 2, France

Jonathan F. Stebbins Department of Geological and Environmental Sciences, Stanford University: Stanford, Galifornia 94305-2115, USA (Received 27 February 2004; revised municript revised 4 June 2004; published 18 August 2004)

Thibault Charpentier

A Monte Carlo / MD Hybrid Approach

Modeling Glass Structure: Bond Switching Algorithm

Defect Free Vitreous Silica Continuous Random Network

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

The simple approach

 $I\left(\vec{\nu}\right) = \sum_{i} I_{th}^{i}\left(\vec{\nu}\right)$

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

The simple approach

Kernel Density Estimate Approach

$$\{C_{Q}, \eta, \delta_{iso}\}_{i} \Rightarrow p(C_{Q}, \eta, \delta_{iso})$$

Kernel: $p(\mathbf{x}) = \sum_{i} \mathcal{K}_{H_{i}}(\mathbf{x} - \mathbf{x}_{i})$
$$I(\vec{\nu}) = \int p(C_{Q}, \eta, \delta_{iso})$$
$$\times I_{th}(\vec{\nu}; C_{Q}, \eta, \delta_{iso})$$

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

Kernel Density Estimate Approach

Glass Topology

The (small)-rings statistics

¹⁷O NMR response of small rings

	P Ring size so-f sing Size 3 126.7 (4.1) 4.	¹⁷ 0	NMR parameter	rs	
	Ring Size	SiOSi	C_{Q}	η	δ_{iso}
		degrees	MĤz		ppm
Exp. 40 Ring size n>4 Sim.	3	126.7 (4.1)	4.61 (0.35)	0.38 (0.15)	55.92 (7.85)
	4	142.3 (10.9)	5.03 (0.39)	0.24 (0.13)	46.54 (6.42)
MAS dimension (ppm)	> 4	147.0 (12.2)	5.21 (0.41)	0.20 (0.12)	39.59 (6.55)
	Exper	iment ^(a)	5.08 (0.37)	0.15 (0.04)	36.7 (4.3)
A Chargement P. Krolf, P. Kmar, J. Phys. Chem C, in press.	^(a) Clark et	al. PRB 2004			
	Local	structure	29	Si NMR paramet	ters
$n=3$ $\sum_{n=4}^{\infty}$ Sim.	Ring Size SiOSi		δ_{iso}	Ω_{σ}	κ_{σ}
40 20 0 -20 -40 -60 80 40 0 -40 -80 -120		degrees	ppm	ppm	
Isotropic dimension (ppm)	3	135.4 (12.4)	-97.97 (4.74)	31.27 (8.40)	0.10 (0.41)
	4	144.0 (11.5)	-106.09 (5.52)	23.66 (8.25)	0.02 (0.40)
Exp. 20 Ring size n=3	> 4	148.3 (12.3)	-110.31 (5.53)	17.50 (6.83)	-0.0 <mark>4 (0.41</mark>)
	Exper	iment ^(a)	-111.2 (5.1)	n.a.	Piero
	^(a) Clark et	al. PRB 2004			
- <u>n=3</u> 40 Sim.					×/
80 40 0 -40 80 120 80 40 0 -40 80 120 MAS dimension (ppm) MAS dimension (ppm)					X
T. Charpentier, P. Kroll, F. Mauri, J. Phys. Chem C, in press.					IRAMIS
			< • > < 🗗	→ E > → E	
Thibault Champenties			CE		COM / LEDDM

Analysis of ¹⁷O NMR parameter distribution

Kernel Density Estimate Approach

Introduction of a correlated 3D NMR parameter distribution: $p(C_Q, \eta, \delta_{iso}) = G(C_Q - \overline{C}_Q) \times G(\eta - f_\eta(C_Q)) \times G(\delta_{iso} - f_\delta(C_Q))$

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

Quantitative Analysis of ¹⁷O Experimental data

Interpretation of ¹⁷O Experimental data

¹⁷ O NMR parameter distribution						
	Charpentier	et al. JPC 2009	Clark et al. PRB 2004			
	Mean	Std. dev.	Mean	Std. dev.		
C_q	5.07 MHz	0.453 MHz	5.08 MHz	0.372 MHz		
η_q	0.157	0.095	0.150	0.0414		
δ_{iso}	36.5 ppm	7.55 ppm	36.7 ppm	4.30 ppm		

CEA / IRAMIS / SIS2M / LSDRM

Thibault Charpentier

Interpretation of ¹⁷O Experimental data

¹⁷ O	NMR	parameter	distribution
-----------------	-----	-----------	--------------

	Charpentier	et al. JPC 2009	Clark et al. PRB 2004		
	Mean	Std. dev.	Mean	Std. dev.	
C_q	5.07 MHz	0.453 MHz	5.08 MHz	0.372 MHz	
η_q	0.157	0.095	0.150	0.0414	
δ_{iso}	36.5 ppm	7.55 ppm	36.7 ppm	4.30 ppm	

Local geo	metry						
	JPC 2009		PRB 2004		Diffraction.		
	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	
Si-O-Si	147.1°	11.17°	146.6°	3.78°	148.3°	7.5°	æ
Si-O	1.60 Å	0.011 Å	1.58 Å	0.019 Å	1.61 Å	0.049 Å	¥
					•	16	RAMI

Thibault Charpentier

CEA / IRAMIS / SIS2M / LSDRM

Bond Angle Distribution (BAD)

T. Charpentier et al., J. Phys. Chem. C 2009

NMR / Structure relationships

Reconstruction of the Bond Angle Distribution (SiOSi) from NMR data

Thibault Charpentier

CEA / IRAMIS / SIS2M / LSDRM

Advanced NMR: Through Bond Correlation Spectroscopy

²⁹Si-¹⁷O J-HMQC experiments.

GIPAW J Calc. coll. J. Yates Oxford

2D NMR enables the observation of spin pair ²⁹Si-¹⁷O through the chemical bond (or through the space) \Rightarrow Observation of Bond Angle $\theta_i - \theta_{i+1}$ correlation ...

Thibault Charpentier

Topology of vitreous B_2O_3

G. Ferlat, T. Charpentier et al., PRL 2008

Thibault Charpentier

Topology of vitreous B_2O_3

Thibault Charpentier

Topology of vitreous B₂O₃

CEA / IRAMIS / SIS2M / LSDRM

 $\hat{\mathbf{P}}$

Thibault Charpentier

aiNMR: Perspectives

A new powerfull tools to get more insight into NMR data

135

71 72 73 74 75 Temps (ps)

CEA / IRAMIS / SIS2M / LSDRM

First Principles NMR of Glass - CECAM Tutorial 2009

Thibault Charpentier

MD-GIPAW

L. Truflandier (LSDRM, Post-Doc)

Nuclear Waste Glasses

F. Angeli, P. Jollivet, S. Peuget, J.M. Delaye (CEA Valrho)

A. Quintas, D. Caurant, O. Majérus (ENS Chimie Paris)

MD simulations

- S. Ispas (LCVN, Montpellier 2)
- G. Ferlat (IMPMC, Paris 6)
- P. Kroll (Arlington, Texas)

GIPAW

- A. Seitsonen, F. Mauri (IMPMC, Paris 6)
- J.Yates (Oxford)