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ation functional

Kohn-Sham method: Total energy

Let us write the total energy as:

Etot[n] = Ekin[n] + Eext[n] + EH[n] + Exc[n]

@ Ein[n] = QM kinetic energy of electrons

@ E.«[n] = energy due to external potential (usually ions)
@ Ey[n] = classical Hartree repulsion (e~ — e™)

@ E,.[n] = exchange-correlation energy
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on functional

Total energy expression

Kohn-Sham (total') energy:

Busll = 25 (| V2 i) + [ () Vew () o

1

/
+ 1//n(r)n(r)dr’dr+EXC
2 )i v |r—r|

'without ion-ion interaction
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Kohn-Sham equations

0Eks
oY ()

= Kohn-Sham equations
1
{37 s ui) = cwitn)

nr) = Y nluoF

Vks () = Vexe (r) + Vi (r) + Vi ()

Vary the Kohn-Sham energy Egs with respect to (r):
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relation functional

Kohn-Sham equatlons: Notes

{—;v2+ Vks (r)}w;( ) =enhi(r) ; Zf i ()2

@ Equation looking like Schrédinger equation

@ The Kohn-Sham potential, however, depends on density
@ The equations are coupled and highly non-linear

@ = Self-consistent solution required

@ ¢; and ¢, are in principle only help variables (only egomo
has a meaning)

@ The potential Vks is local
@ The scheme is in principle exact
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Kohn-Sham equations: Self-consistency

@ Generate a starting density ni"t

@ Generate the Kohn-Sham potential = Vit
@ Solve the Kohn-Sham equations = it
@ New density n'

© Kohn-Sham potential Vi

@ Kohn-Sham orbitals = 1/

@ Density n?

o ..

... until self-consistency is achieved (to required precision)
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Kohn-Sham energy: Alternative expression

@ Take the Kohn-Sham equation, multiply from the left with
fipf and integrate:

1
.y / 5 (1) V2 (1) dr + 1 / Vis (r) 45 (|)2 O = fie;

@ Sum over i and substitute into the expression for
Kohn-Sham energy:

r

Exsln] = ) fiei— Eu+ Exc —/n(r) Vidr
i
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Exchange-correlation functional

Exchange-correlation functional
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Exchange-correlation functional

@ The Kohn-Sham scheme is in principle exact — however,
the exchange-correlation energy functional is not known
explicitly
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Exchange-correlation functional

@ The Kohn-Sham scheme is in principle exact — however,
the exchange-correlation energy functional is not known
explicitly

@ Exchange is known exactly, however its evaluation is
usually very time-consuming, and often the accuracy is not
improved over simpler approximations (due to
error-cancellations in the latter group)

@ Many exact properties, like high/low-density limits, scaling
rules efc are known
@ Famous approximations:

e Local density approximation, LDA

o Generalised gradient approximations, GGA
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Exchange-correlation hole

@ The exchange-correlation energy can be expressed using
the exchange-correlation hole ny (r, ')

1 Ny (Fr,F —r)
E. = /n r /’dr’dr
2 r () r ]I‘— /|

= 1/n r) /nXC R)dQ2 dR dr
2 Jy
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Exchange-correlation hole

@ The exchange-correlation energy can be expressed using
the exchange-correlation hole ny (r, ')

/_
E. — 1/n(r)/’Wdr’dr
r -

2 ),
1 21
= 2/ r/ R /nXC R)dQ2 dR dr
r

@ Thus E;. only depends on the spherical average of
Ny (1, 1)
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Exchange -correlation functional

Exchange-correlation hole

@ The exchange-correlation energy can be expressed using
the exchange-correlation hole ny (r, ')

/_
E. — 1/n(r)/’Wdr’dr
r -

2 ),
1 21
= 2/ r/ R /nXC R)dQ2 dR dr
r

@ Thus E;. only depends on the spherical average of
Ny (1, 1)
@ Sum rule

/ N (r,F —r)dr' = —1
r/
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Exchange-correlation functional

Exchange-correlation hole: Silicon

PP Rushton, DJ Tozer SJ Clark, Phys Rev B 65 (2002) 235203
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Exchange-correlation functional: LDA

Local density approximation:

@ Use the exchange-correlation energy functional for
homogeneous electron gas at each point of space:

Exe = Jyn(r) e [n(r)]dr
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Exchange-correlation functional: LDA

@ The LDA exchange energy is due to Slater and Dirac,

ex(n) = Cxn'/® | where Cy = _g(§)1/3

s

@ The exact analytical form of the correlation energy e¢(n) of
the homogeneous electron gas is not known. The
correlation energy is therefore fitted to quantum
Monte-Carlo results (Ceperley & Alder) and analytical high-
and low-density limits

e There are several parametrisations: Vosko, Wilk & Nusair
(1980); Perdew & Zunger (1981); Perdew & Wang (1992))
e Pade-interpolation reproducing the Perdew-Wang data

S Goedecker, M Teter & J Hutter, Phys Rev B 54 (1996)
1703
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Exchange-correlation functional: LDA

Correlation energy function e¢(n)
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Exchange-correlation functional: LDA

Why does it albeit work so well?

@ The XC contribution is the smallest (that’s why it was
packed aside in the first place)

@ LDA, despite is simplicity, still fulfills many important
requirements set for the exact functional; scaling relations,
sumrules, ...

@ There is a major error cancellation between the exchange
and correlation (Warning: Same occurs with many other
functionals also; thereby best keeping the same “level of
sophistication” in both parts)
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DFT

Exchange-correlation functional: LDA
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@ The hole (top) is badly described, however the spherical
average (bottom), which is the property needed, agrees

reasonably

@ LDA fulfills several sum rules

DFT in the solid state

September 24, 2009

17 /42



DFT Repetition
Exchange-correlation functional

Exchange-correlation functional: LDA

Why does it not work so well?

@ Missing integer discontinuity in the potential; thus bad
excitation energies; the first place)

@ Self-interaction not excluded: The electron interacts
directly with itself

@ Thus for example d and f functions underbound (eg
density of states in fcc Cu)

@ Wrong tail: no Rydberg states, image states at metal
surfaces
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Exchange-correlation functional: GGA

Generalised gradient approximation:

@ The gradient expansion of the exchange-correlation energy
does not improve results; sometimes leads to divergences
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Exchange-correlation functional: GGA

Generalised gradient approximation:

@ The gradient expansion of the exchange-correlation energy
does not improve results; sometimes leads to divergences

@ Thus a more general approach is taken, and there is room
for several forms of GGA: Exc = [ n(r) ex.[n(r), |V n(r)[*]dr
@ Works reasonably well, again fulfilling certain sum rules
e Energy differences are improved
e Lattice constants somewhat, 1-3 % too large, bulk moduli
too small
e Contains self-interaction in single-particle case
e Again exponential asymptotic decay in potential
e = Negative ions normally not bound
e Usually the best compromise between speed and accuracy
in large systems
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Exchange-correlation functional: GGA-PBE

J Perdew, KBurke & M Ernzerhof, Phys Rev Lett (1996):

@ Like Perdew-Wang’91: “Analytical” function, only “natural
constants”

PBE PBE PBE
EPBE _ EPBE | FI

EPPE (n,|Vn]) = / n<lPA (n) FPBE (s) o,
r

FPE(s) = 14k-

s2”’
1+ 6=
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Exchange-correlation functional: GGA-PBE

E?Em,vm)::.[dm[“M(m - HPPE (1, )]

2
HPF (rs,m,t) = ~¢°In [1 L Op <1 LAt )],

¥ + AR + A2t
_ B 1
A(rs,m) = N A
1
o = 5 |[(1+n°+(1-n)?,

_ 1/3
1 I2n 2, rs = [43n} local Wigner-Seitz radius

™ ™
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Exchange-correlation functional: GGA-PBE

Here s(r) = g% and 1(r) = J5k ks = \/4ke/x, are
dimensionless density gradients and 5 comes from the
generalised gradient expansion for the correlation (Perdew et
al, 1992) and ~ 0.066 725 (Wang & Perdew, 1991). « is formally
set by the Lieb-Oxford bound (1981) for the exchange energy

Ec[n] > Ex.[n] > —1.679/n4/3 (r) dr.
r

Note: revPBE plays exactly with this parameter
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Exchange-correlation functional: LDA+U/GGA+U

@ Add on-site Hubbard term:
=5 [ (1)
lo

@ Improves description (energetics, magnetic moments, .. .)
in many cases — but not always
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Exchange-correlation functional: Meta-GGA

Meta-Generalised gradient approximation:
@ In addition to the gradient, add also orbital kinetic energy

(=3 5I1V6 (1)1

E.~ /n(r) e[n(r), IV n(0)2, 7(r)]dr

r
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Exchange-correlation functional: SIC

@ The usual functionals include self-interaction: The electron
interacts with itself because the functionals contain the full
density, thus also that of a given orbital v;
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Exchange-correlation functional: SIC

@ The usual functionals include self-interaction: The electron
interacts with itself because the functionals contain the full
density, thus also that of a given orbital v;

@ Different schemes to correct for this:

e JP Perdew & A Zunger, Phys Rev B 23 (1981) 5048

Esicpz = Exs — Z Epxe [N1]
i
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Exchange-correlation functional: SIC

@ The usual functionals include self-interaction: The electron
interacts with itself because the functionals contain the full
density, thus also that of a given orbital v;

@ Different schemes to correct for this:

e JP Perdew & A Zunger, Phys Rev B 23 (1981) 5048

Esicpz = Exs — Z Epxe [N1]
i

e M d’Avezac, M Calandra & F Mauri, Phys Rev B 71 (2005)
205210

Esic,spz = Exs — En [m] — Exc [m, 0]
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Exchange-correlation functional: SIC

@ The usual functionals include self-interaction: The electron
interacts with itself because the functionals contain the full

density, thus also that of a given orbital v;

@ Different schemes to correct for this:
e JP Perdew & A Zunger, Phys Rev B 23 (1981) 5048

Esicpz = Exs — Z Epxe [N1]
i

e M d’Avezac, M Calandra & F Mauri, Phys Rev B 71 (2005)
205210
Esic sz = Exs — En [m] — Exc [, 0]
e M d’Avezac, M Calandra & F Mauri, Phys Rev B 71 (2005)
205210
Esic,us = Eks — Eu [m] — Exc [Ny, n)] + Exc [y — m, ny]
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Exchange-correlation functional: Hybrid functionals

Hybrid functionals

@ Include partially the exact (Hartree-Fock) exchange:
Eyxe ~ aEyr + (1 — ) ESSA + ESCA; again many variants
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Exchange-correlation functional: Hybrid functionals

Hybrid functionals

@ Include partially the exact (Hartree-Fock) exchange:
Eye ~ aEgr + (1 — o) ESSA + ESGA; again many variants
@ Works in general well

Energy differences are still improved

Improved magnetic moments in some systems

Partial improvement in asymptotic form

Usually the best accuracy if the computation burden can be
handled

e Calculations for crystals appearing

@ The method is no longer pure Kohn-Sham method: Fock
operator is non-local; a mixed DFT-KS/Hartree-Fock
scheme
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Exchange-correlation functional: OEP/OPM/EXX

@ The Hartree-Fock energy is the exact exchange energy
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Exchange-correlation functional: OEP/OPM/EXX

@ The Hartree-Fock energy is the exact exchange energy

@ This can be varied with respect to potential, leading to an
integral equation for the exchange potential

= [{o0 0 it anansafar-o

i
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Exchange-correlation functional: ACDFT

1 0 1 ) )
E - / / D [Whare ks (i) — 2 (iw)]} 0l A
A=0Jw=0T

DFT in the solid state September 24, 2009 28/42



DFT Repetition
Exchange-correlation functional

Exchange-correlation functional: Observations

@ The accuracy can not be systematically improved!
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Exchange-correlation functional: Observations

@ The accuracy can not be systematically improved!
@ van der Waals interactions still a problem (tailored
approximations in sight, like Langreth-Lundqvist functional)
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Exchange-correlation functional: Jacob’s ladder

ACDFET, RPA, ..

hybrid

meta-GGA

GGA
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Exchange-correlation functional: Results

Small molecules
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Exchange-correlation functional: Results

Water clusters

light dimer
. Pwel 2

hybrid — medium  trimer
meta MPw15: dark all
GGA MPW:

Pws:

Bo7- —_

wewa

paE1Py
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GGA B3LY|
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Mean Unsigned Error per Molecul:
AIDFT calculations use the MG3S (6-311+G(2d1,2p)) basis set.
Dahlke, E. E.; Truhlar, D. G. J. Phys. Chem. B 2005, 109, 15677
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Exchange-correlation functional: Simple reactions

Interaction energy (kJ/mol) for CO + M"AI(OH), 1
Na Cu’
Method Basis set E pssey E E, -
Post HF  CCSD{T) -26 -192
MP2 -28 -142
HI HI 22 2¢ 2
OFE 1-T cluster model
GGA PBE -29 =240 =210
BPE& -23 =132 =205
BLYP -25 =216
BiLYP -26 -180
r heights of H: + H — H + Hz [in keal/'mol]
Method barrier without SIC barrier with S1C
LsSD
BLYP
BPWa1 4.7 143
BILYP 4.1 1.1
EXP. 9.7
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Exchange-correlation functional: Results

Solids

, [ = LsDa
] o PBE i
?o el A TPSS “
a | = HSE
m
O 5 Lo
Solid LSDA PBE TPSS HSE IR R
]
o 4 a
ME" -0.046 0.076 0.063 0.035 s ! A
MAE® 0.047 0.076 0,063 0.037 2 4 -';
o
rms” 0.058 0.084 0071 0.044 5 | iz 5%
Max (+)* 0.017 0.158 0.143 0.100 E 2 o 2 gog ®
| e
Max (-)° 0.139 . —0.014 ; pat %.,
| A
*Mean efror. 1 L g a
"Mean absolute error. 0y Sbad
“Root-mean-square error. s 7 = = n z . =

IMaximum positive deviation. .
*Maximum negative deviation Experimental Band Gap (eV)

J Chem Phys 123 (2005) 174101
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Exchange-correlation functional: Results

Magnetic oxides

A(eV) ap(R) Bo(GPa)

Compound ~ Method ~FM ~ AFM  FM  AFM  FM  APM  Epy-Esmy(meV)

U0 LSDA 0 0 5317 5289 239 216 -98
PBE 0 0 5425 5445 206 186 -123
TPSS 0 0 5437 5445 22 191 —124
PBEO 223 303 5455 5454 220 219 +2
HSE 1.56 239 5.463 5.463 226 218 +7
Exp. 2.1¢ 5.470° 207 >0°
Pu0, LSDAS i 0 5278 5285 229 222 -310
PBE 0 0 539 5412 189 182 —259
TPSS 0 006 5382 5403 201 201 -116
PBEO' 240 339 5387 5385 221 221 +14
HSE 1.68 2.64 5.308 5.396 221 220 +14
Expt. 1.88 5308t 1784 =0t
B-Pu,050 LSDAf 0 0 369 3680 181 175 —185
PBEf 0 0 379 3791 146 136 —291
TPSS 0 004 370 3777 156 146 —241
PBEO’ > i 3.50 3.823 3.824 176 175 +11
HSE 183 278 3823 382 150 IS8 43
Expt. >0 3.841% >0!

Phys Rev B 73 (2006) 045104
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Functionals: Chemical shifts

Mean absolute deviation [ppm]

method absolute relative

HF 8.5 8.1
MP2 5.6 1.6
LDA 15.2 14.4
BLYP 15.0 7.8

B3LYP 13.0 7.9
PBEO 3.1 2.5

CHy, NH3z, H20, CoHg, CoHg, CoHa, No, CFy, ...
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Functionals: Chemical shifts in ozone

O3 ; [ppm]
method Oterminal Ocentral
HF —2793 —2717
MP2 +1055 +2675
CCSD(T) ~1208 754
LDA —1520 —-914
BLYP —1454 —892
B3LYP —-1673 —-1115
PBEO —1453 —1040
expr —1290, —1254 724, —688
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DFT: Scaling

Scaling Behavior Method

B DFT(LSDA,GGA,meta)

N4 HF, DFT(hybrid,hybrid meta)

g MP2

N6 MP3, CISD, MP4DQ, CCSD, QCISD
N7 MP4,CCSD(T),QCISD(T)

B MP5,CISDT,CCSDT

AP MP8&

10 MP7,CISDTQ,CCSDTQ
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© GiPAW-PP
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Input for Id1.x

&input
title = "0’
prefix = "0’
zed = 8.0
rel =1
config = "1s2 2s2 2p4 3s-1 3p-1 3d-1’
iswitch = 3
dft = 'PBE’
/
&inputp
pseudotype = 1
tm = .true.
lloc = 2
file_pseudopw = ’O.pbe-tm-gipaw.UPF’
lgipaw_reconstruction = .true.

25 10 2.00 0.00 1.40 1.40
2p 2 1 4.00 0.00 1.40 1.40
3D 3 2 -1.00 -0.30 1.40 1.40

&test

/

4

2510 2.00 0.00 1.40 1.40
2P 2 1 4.00 0.00 1.40 1.40
3520 0.00 0.00 1.40 1.40
3P 31 0.00 -0.10 1.40 1.40
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Wave functions

0,, orbital + "0, "

r, = 1.4 Bohr

1 [Bohr]
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Wave functions: Scaled

" LLl
sz & Dap orbitals
fm 1.4 Bahr
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