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Motivation: Why use DFT?

Explicit inclusion of electronic structure

Predictable accuracy (unlike fitted/empirical approaches)
Knowledge of the electron structure can be used for the
analysis; many observables can be obtained directly

Preferable scaling compared to many quantum chemistry
methods
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History of DFT — I

There were already methods in the early 20th century
Thomas-Fermi-method
Hartree-Fock-method
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Walter Kohn
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Hohenberg-Kohn theorems: Theorem I

Given a potential, one obtains the wave functions via
Schrödinger equation:

V (r)⇒ ψi (r)

The density is the probability distribution of the wave
functions:

n (r) =
∑

i

|ψi (r)|2

Thus
V (r)⇒ ψi (r)⇒ n (r)
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Hohenberg-Kohn theorems: Theorem I

Theorem
The potential, and hence also the total energy, is a unique
functional of the electron density n(r)

Thus
V (r)⇒ ψi (r)⇒ n (r)⇒ V (r)

The electron density can be used to determine all properties of
a system
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Hohenberg-Kohn theorems: Theorem II

Theorem
The total energy is variational: In the ground state the total
energy is minimised

Thus
E [n] ≥ E [nGS]
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History of DFT — V: The reward

. . . in 1998:
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Kohn-Sham method: Total energy

Let us write the total energy as:

Etot[n] = Ekin[n]

+ Eext[n] + EH[n] + Exc[n]

Ekin[n] = QM kinetic energy of electrons

Eext[n] = energy due to external potential (usually ions)
EH[n] = classical Hartree repulsion (e− − e−)
Exc[n] = exchange-correlation energy
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Kohn-Sham method: Noninteracting electrons

To solve the many-body Schrödinger equation as such is an
unformidable task

Let us write the many-body wave function as a determinant
of single-particle equations
Then kinetic energy of electrons becomes

Ekin,s =
∑

i

−1
2

fi
〈
ψi (r) | ∇2 | ψi (r)

〉
fi = occupation of orbital i (with spin-degeneracy included)
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Kohn-Sham method: External energy

Energy due to external potential; usually Vext =
∑

I −
ZI
|r−RI |

Eext =

∫
r
n (r) Vext (r) dr

n (r) =
∑

i

fi |ψi (r)|2
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Kohn-Sham method: Hartree energy

Classical electron-electron repulsion

EH =
1
2

∫
r

∫
r′

n (r) n (r′)
|r− r′|

dr′ dr

=
1
2

∫
r
n (r) VH (r) dr

VH (r) =

∫
r′

n (r′)
|r− r′|

dr′
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Kohn-Sham method: Exchange-correlation energy

The remaining component: Many-body complications
combined

=⇒Will be discussed later
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Total energy expression

Kohn-Sham (total1) energy:

EKS[n] =
∑

i

−1
2

fi
〈
ψi | ∇2 | ψi

〉
+

∫
r
n (r) Vext (r) dr

+
1
2

∫
r

∫
r′

n (r) n (r′)
|r− r′|

dr′ dr + Exc

1without ion-ion interaction
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Kohn-Sham equations

Vary the Kohn-Sham energy EKS with respect to ψ∗j (r′′): δEKS
δψ∗j (r′′)

⇒ Kohn-Sham equations

{
−1

2
∇2 + VKS (r)

}
ψi (r) = εiψi (r)

n (r) =
∑

i

fi |ψi (r)|2

VKS (r) = Vext (r) + VH (r) + Vxc (r)

Vxc (r) = δExc
δn(r)
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Kohn-Sham equations: Notes

{
−1

2
∇2 + VKS (r)

}
ψi (r) = εiψi (r) ; n (r) =

∑
i

fi |ψi (r)|2

Equation looking like Schrödinger equation

The Kohn-Sham potential, however, depends on density
The equations are coupled and highly non-linear
⇒ Self-consistent solution required
εi and ψi are in principle only help variables (only εHOMO
has a meaning)
The potential VKS is local
The scheme is in principle exact
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Kohn-Sham equations: Self-consistency

1 Generate a starting density ninit

2 Generate the Kohn-Sham potential⇒ V init
KS

3 Solve the Kohn-Sham equations⇒ ψinit
i

4 New density n1

5 Kohn-Sham potential V 1
KS

6 Kohn-Sham orbitals⇒ ψ1
i

7 Density n2

8 . . .

. . . until self-consistency is achieved (to required precision)
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Kohn-Sham equations: Self-consistency

Usually the density coming out from the wave functions is
mixed with the previous ones, in order to improve
convergence

In metals fractional occupations numbers are necessary
The required accuracy in self-consistency depends on the
observable and the expected
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Kohn-Sham energy: Alternative expression

Take the Kohn-Sham equation, multiply from the left with
fiψ∗i and integrate:

−1
2

fi
∫

r
ψi (r)∇2ψi (r) dr + fi

∫
r
VKS (r) |ψi (r)|2 dr = fiεi

Sum over i and substitute into the expression for
Kohn-Sham energy:

EKS[n] =
∑

i

fiεi − EH + Exc −
∫

r
n (r) Vxcdr
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Periodic systems

In realistic systems there are ≈ 1020 atoms in cubic
millimetre — unformidable to treat by any numerical
method

At this scale the systems are often repeating (crystals)
. . . or the observable is localised and the system can be
made periodic
Choices: Periodic boundary conditions or isolated
(saturated) cluster
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Periodic systems

Is it possible to replace the summation over translations L with
a modulation?

Bloch’s theorem
For a periodic potential V (r + L) = V (r) the eigenfunctions
can be written in the form

ψi (r) = eik·ruik (r) ,

uik (r + L) = uik (r)

DFT in the solid state September 21, 2009 26 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Periodic systems

Is it possible to replace the summation over translations L with
a modulation?

Bloch’s theorem
For a periodic potential V (r + L) = V (r) the eigenfunctions
can be written in the form

ψi (r) = eik·ruik (r) ,

uik (r + L) = uik (r)

DFT in the solid state September 21, 2009 26 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Periodic systems: Reciprocal space

Reciprocal lattice vectors:

b1 = 2π
a2 × a3

a1 · a2 × a3

b2 = 2π
a3 × a1

a2 · a3 × a1

b3 = 2π
a1 × a2

a3 · a1 × a2

DFT in the solid state September 21, 2009 27 / 61
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Periodic systems: Brillouin zone

First Brillouin zone: Part of space closer to the origin than
to any integer multiple of the reciprocal lattice vectors,
K′ = n1b1 + n2b2 + n3b3

DFT in the solid state September 21, 2009 28 / 61
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Integration over reciprocal space

Thus the summation over infinite number of translations
becomes an integral over the first Brillouin zone:

∞∑
L

⇒
∫

k∈1.BZ
dk

In practise the integral is replaced by a weighted sum of
discrete points: ∫

k
dk ≈

∑
k

wk

Thus eg.
n (r) =

∑
k

wk
∑

i

fik |ψik (r)|2
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Periodic systems: Dispersion
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Band structure: Example Pb/Cu(111)

Photoemission vs DFT calculations for a free-standing layer

Felix Baumberger, Anna Tamai, Matthias Muntwiler, Thomas Greber and Jürg

Osterwalder; Surface Science 532-535 (2003) 82-86

doi:10.1016/S0039-6028(03)00129-8
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Monkhorst-Pack algorithm
Approximate the integral with an equidistance grid of k
vectors with identical weight:

n =
2p − q − 1

2q
, p = 1 . . . q

kijk = n1b1 + n2b2 + n3b3
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Symmetry operations

If the atoms are related by symmetry operation S
(Sψ (r) = ψ (Sr)) the integration over the whole 1st
Brillouin zone can be reduced into the irreducible Brillouin
zone, IBZ

Sψik (r) = ψik (Sr) = eik·Sruik (Sr) = eik′·ruik′ (r) , k′ = S−1k

∫
k

dk ≈
∑

k∈BZ

wk =
∑

k∈IBZ

∑
S

w ′Sk
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Irreducible Brillouin zone: Examples
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Doubling the unit cell
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Doubling the unit cell (super-cells)

If one doubles the unit cell in one direction, it is enough to
take only half of the k points in the corresponding direction
in the reciprocal space

And has to be careful when comparing energies in cells
with different size

unless either equivalent sampling of k
points is used or one is converged in the total energy in
both cases
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Kohn–Sham method

The ground state energy is obtained as the solution of a
constrained minimisation of the Kohn-Sham energy:

min
{Φ}

EKS[{Φi(r)}]

∫
Φ?

i (r)Φj(r)dr = δij
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Expansion using a basis set

For practical purposes it is necessary to expand the
Kohn-Sham orbitals using a set of basis functions
Basis set {ϕα(r)}Mα=1

Usually a linear expansion

ψi(r) =
M∑
α=1

cαiϕα(r)

DFT in the solid state September 21, 2009 39 / 61
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Plane waves

Philosophy
Assemblies of atoms are slight distortions to free electrons

ϕα(r) =
1√
Ω

eiGα·r

(. . . = cos(Gα · r) + i sin(Gα · r))

+ orthogonal
+ independent of atomic positions
+ no BSSE
± naturally periodic
– many functions needed
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Computational box

Box matrix : h = [a1,a2,a3]

Box volume : Ω = det h
DFT in the solid state September 21, 2009 41 / 61
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Lattice vectors

Direct lattice h = [a1,a2,a3]

Translations in direct lattice: L = i · a1 + j · a2 + k · a3

Reciprocal lattice 2π(ht )−1 = [b1,b2,b3]

bi · aj = 2πδij

Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3
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Expansion of Kohn-Sham orbitals

Plane wave expansion

ψik(r) =
∑

G

cik(G)ei(k+G)·r

To be solved: Coefficients cik(G)

Different routes:
Direct optimisation of total energy
Iterative diagonalisation/minimisation
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Dependence on position

Translation:
φ(r) −→ φ(r− RI)

φ(r− RI) =
∑

G

φ(G)eiG·(r−RI)

=
∑

G

(
φ(G)eiG·r

)
e−iG·RI

Structure Factor:
SI(G) = e−iG·RI

Derivatives:
∂φ(r− RI)

∂RI,s
= −i

∑
G

Gs

(
φ(G)eiG·r

)
SI(G)
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Plane waves: Kinetic energy

Kinetic energy operator in the plane wave basis:

−1
2
∇2ϕG(r) = −1

2
(iG)2 1√

Ω
eiG·r =

1
2

G2ϕG(r)

Thus the operator is diagonal in the plane wave basis set

Ekin(G) =
1
2

G2
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Cutoff: Finite basis set

Choose all basis functions into
the basis set that fulfill

1
2

G2 ≤ Ecut

— a cut-off sphere

NPW ≈
1

2π2 ΩE3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only
— and is variational!
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Density functional theory
Bloch theorem / supercells

Plane wave basis set

Basics of plane wave basis set
Operators
Energy terms in plane wave basis set
Introduction to pseudo potentials

Cutoff: Finite basis set

Choose all basis functions into
the basis set that fulfill

1
2

G2 ≤ Ecut

— a cut-off sphere

NPW ≈
1

2π2 ΩE3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only
— and is variational!

DFT in the solid state September 21, 2009 46 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Basics of plane wave basis set
Operators
Energy terms in plane wave basis set
Introduction to pseudo potentials

Cutoff: Finite basis set

Choose all basis functions into
the basis set that fulfill

1
2

G2 ≤ Ecut

— a cut-off sphere

NPW ≈
1

2π2 ΩE3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only

— and is variational!

DFT in the solid state September 21, 2009 46 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Basics of plane wave basis set
Operators
Energy terms in plane wave basis set
Introduction to pseudo potentials

Cutoff: Finite basis set

Choose all basis functions into
the basis set that fulfill

1
2

G2 ≤ Ecut

— a cut-off sphere

NPW ≈
1

2π2 ΩE3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only
— and is variational!

DFT in the solid state September 21, 2009 46 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Basics of plane wave basis set
Operators
Energy terms in plane wave basis set
Introduction to pseudo potentials

Plane waves: Fast Fourier Transform

The information contained in ψ(G) and ψ(r) are equivalent

ψ(G)←→ ψ(r)

Transform from ψ(G) to ψ(r) and back is done using fast
Fourier transforms (FFT’s)
Along one direction the number of operations ∝ N log[N]

3D-transform = three subsequent 1D-transforms
Information can be handled always in the most appropriate
space

DFT in the solid state September 21, 2009 47 / 61
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Plane waves: Integrals

Parseval’s theorem

Ω
∑

G

A?(G)B(G) =
Ω

N

∑
i

A?(ri)B(ri)

Proof.

I =

∫
Ω

A?(r)B(r)dr

=
∑
GG′

A?(G)B(G)

∫
exp[−iG · r] exp[iG′ · r]dr

=
∑
GG′

A?(G)B(G) Ω δGG′ = Ω
∑

G

A?(G)B(G)
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Plane waves: Electron density

n(r) =
∑

ik

wkfik|ψik(r)|2 =
1
Ω

∑
ik

wkfik
∑
G,G′

c?ik(G)cik(G′)ei(G−G′)·r

n(r) =
2Gmax∑

G=−2Gmax

n(G)eiG·r

The electron density can be expanded exactly in a plane wave
basis with a cut-off four times the basis set cutoff.

NPW(4Ecut) = 8NPW(Ecut)
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1
Ω

∑
ik
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Plane waves: Operators

The Kohn-Sham equations written in reciprocal space:{
−1

2
∇2 + VKS(G,G′)

}
ψik (G) = εiψik (G)

However, it is better to do it like Car and Parrinello (1985)
suggested: Always use the appropriate space (via FFT)
There one needs to apply an operator on a wave function:∑

G′
O(G,G′)ψ

(
G′
)

=
∑
G′

c
(
G′
)
〈G|O|G′〉

Matrix representation of operators in: O(G,G′) = 〈G|O|G′〉
Eg. Kinetic energy operator

TG,G′ = 〈G| − 1
2
∇2|G′〉 =

1
2

G2δG,G′
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Kohn–Sham energy

EKS = Ekin + EES + Epp + Exc

Ekin Kinetic energy
EES Electrostatic energy (sum of electron-electron

interaction + nuclear core-electron interaction +
ion-ion interaction)

Epp Pseudo potential energy not included in EES

Exc Exchange–correlation energy
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Kinetic energy

Ekin =
∑

ik

wkfik〈ψik|−
1
2
∇2|ψik〉

=
∑

ik

wkfik
∑
GG′

c∗ik(G)cik(G′)〈k + G|−1
2
∇2|k + G′〉

=
∑

ik

wkfik
∑
GG′

c∗ik(G)cik(G′) Ω
1
2
|k + G|2 δG,G′

= Ω
∑

ik

wkfik
∑

G

1
2
|k + G|2 |cik(G)|2
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Periodic Systems

Hartree-like terms are most efficiently evaluated in
reciprocal space via the

Poisson equation

∇2VH(r) = −4πntot(r)

VH(G) = 4π
n(G)

G2

VH(G) is a local operator with same cutoff as ntot
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Electrostatic energy

EES =
1
2

∫∫
n(r)n(r′)
|r− r′|

dr′dr+
∑

I

∫
n(r)V I

core(r)dr+
1
2

∑
I 6=J

ZIZJ

|RI − rJ |

The isolated terms do not converge; the sum only for
neutral systems
Gaussian charge distributions a’la Ewald summation:

nI
c(r) = − ZI(

Rc
I

)3π
−3/2 exp

[
−
(

r− RI

Rc
I

)2
]

Electrostatic potential due to nI
c:

V I
core(r) =

∫
nI

c(r′)
|r− r′|

dr′ = − ZI

|r− RI |
erf
[
|r− RI |

Rc
I

]
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Electrostatic energy

Electrostatic energy

EES = 2πΩ
∑
G 6=0

|ntot(G)|2

G2 + Eovrl − Eself

Eovrl =
∑′

I,J

∑
L

ZIZJ

|RI − rJ − L|
erfc

 |RI − rJ − L|√
Rc

I
2 + Rc

J
2


Eself =

∑
I

1√
2π

Z 2
I

Rc
I

Sums expand over all atoms in the simulation cell, all direct
lattice vectors L; the prime in the first sum indicates that
I < J is imposed for L = 0.
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Exchange-correlation energy

Exc =

∫
r
n(r)εxc(r)dr = Ω

∑
G

εxc(G)n?(G)

εxc(G) is not local in G space; the calculation in real space
requires very accurate integration scheme.
If the function εxc(r) requires the gradients of the density,
they are calculated using reciprocal space, otherwise the
calculation is done in real space (for LDA and GGA; hybrid
functionals are more intensive)
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Plane waves: Basic self-consistent cycle

n(r)
FFT−→ n(G)

Vxc[n](r)
VES(G)

VKS(r) = Vxc[n](r) + VES(r)
FFT←− VES(G)

ψik(r)
Ni×FFT←− ψik(G)

VKS(r)ψik(r)
Ni×FFT−→ [VKSψik] (G)

update ψik(G)

ψ′ik(r)
Ni×FFT←− ψ′ik(G)

n′(r) =
∑

ik wkfik
∣∣ψ′ik(r)

∣∣2

DFT in the solid state September 21, 2009 57 / 61



Density functional theory
Bloch theorem / supercells

Plane wave basis set

Basics of plane wave basis set
Operators
Energy terms in plane wave basis set
Introduction to pseudo potentials

Plane waves: Calculation of forces

With the plane wave basis set one can apply the

Hellmann-Feynman theorem

(FI =)− d
dRI
〈Ψ | HKS | Ψ〉 = −〈Ψ | ∂

∂RI
HKS | Ψ〉

All the terms where RI appear explicitly are in reciprocal
space, and are thus very simple to evaluate:

∂

∂RI
e−iG·RI = −iGe−iG·RI
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Plane waves: Summary

Plane waves are delocalised, periodic basis functions

Plenty of them are needed, however the operations are
simple
The quality of basis set adjusted using a single parametre,
the cut-off energy
Fast Fourier-transform used to efficiently switch between
real and reciprocal space
Forces and Hartree term/Poisson equation are trivial
The system has to be neutral ! Usual approach for charged
states: Homogeneous neutralising background
The energies must only be compared with the same Ecut
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Why use pseudo potentials?

Reduction of basis set size
effective speedup of calculation
Reduction of number of electrons
reduces the number of degrees of freedom
For example in Pt: 10 instead of 78
Unnecessary “Why bother? They are inert anyway...”
Inclusion of relativistic effects
relativistic effects can be included "partially" into effective
potentials
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Pseudo potential

What is it?

Replacement of the all-electron, −Z/r problem with a
Hamiltonian containing an effective potential

It should reproduce the necessary physical properties of
the full problem at the reference state
The potential should be transferable, ie. also be accurate
in different environments

The construction consists of two steps of approximations
Frozen core approximation
Pseudisation
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