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Density functional theory Motivation

am method

Motivation: Why use DFT?

@ Explicit inclusion of electronic structure
e Predictable accuracy (unlike fitted/empirical approaches)
e Knowledge of the electron structure can be used for the
analysis; many observables can be obtained directly
@ Preferable scaling compared to many quantum chemistry
methods
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Density functional theory

Kohn-Sham method

History of DFT — |

@ There were already methods in the early 20th century

@ Thomas-Fermi-method
e Hartree-Fock-method
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Density functional theory M
History
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History of DFT — IlI: Foundations

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

Inhomogeneous Electron Gas*

P. HOHENBERGT
Ecole Normale Superieure, Paris, France
AND

W. Kounf
Feole Norinale Su pericure, Paris, France and Faculté des Seiences, Orsay, France

and
University of California at San Diego, La Jolla, California
(Received 18 June 1964)

“This paper deals with the ground state of an interacting electron gas in an external potential o(r). Tt is
proved that there exists a universal functional of the density, F[»(r)], independent of »(r), such that the ex-
pression E= [o(r)s (r)dr+ F[(r)] has as its minimum value the correct ground-state energy associated with
o(r). The functional F[r(r)] is then discussed for two situations: (1) n(r)=no+#(r), fi/ne<<1, and
(2) n(r) = ¢(r/ro) with ¢ arbitrary and ro — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.
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Hohenberg-Kohn theorems: Theorem |

@ Given a potential, one obtains the wave functions via
Schrédinger equation:

V(r) = 9 (r)
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Density functional theory

Hohenberg-Kohn theorems: Theorem |

@ Given a potential, one obtains the wave functions via
Schrédinger equation:

V(r) = ¢i(r)
The density is the probability distribution of the wave
functions:
n(r) =" [i(nf
i
Thus

V(r) = ¢ (r) = n(r)
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Density functional theory Motivation
History
Kohn-Sham method

Hohenberg-Kohn theorems: Theorem |

The potential, and hence also the total energy, is a unique
functional of the electron density n(r)

Thus
V(r)= ()= n(r)= V()

The electron density can be used to determine all properties of
a system
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Hohenberg-Kohn theorems: Theorem ||

The total energy is variational: In the ground state the total
energy is minimised
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Density functional theory Motivation
History
Kohn-Sham method

Hohenberg-Kohn theorems: Theorem ||

The total energy is variational: In the ground state the total
energy is minimised

Thus
E[n] > E[nGs]
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Density functional theory Motivation
History
Kohr m method

History of DFT — IV: Foundations

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15§ NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects*

W. Koun axp L. J. Smam
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of §.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.
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Density functional theory

History

History of DFT — V: The reward

...in 1998:
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Density functional theory

ham method

Kohn-Sham method: Total energy

Let us write the total energy as:

Eit[n] = Exin[N]

@ Eyin[n] = QM kinetic energy of electrons
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Kohn-Sham method: Total energy
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ham method

Kohn-Sham method: Total energy

Let us write the total energy as:
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@ Ein[n] = QM kinetic energy of electrons
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Density functional theory

ham method

Kohn-Sham method: Total energy

Let us write the total energy as:

Eiot[n] = Exin[N] + Eex[n] + En[n] + Exc[N]

@ Ein[n] = QM kinetic energy of electrons

@ E.[n] = energy due to external potential (usually ions)
@ Ey[n] = classical Hartree repulsion (e~ — e™)

@ E,.[n] = exchange-correlation energy
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Kohn-Sham method

Kohn-Sham method: Noninteracting electrons

To solve the many-body Schrédinger equation as such is an
unformidable task
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Density functional theory

m method

Kohn-Sham method: Noninteracting electrons

To solve the many-body Schrédinger equation as such is an
unformidable task

@ Let us write the many-body wave function as a determinant
of single-particle equations

@ Then kinetic energy of electrons becomes

Euns = 32— 1 {010 | V2 |y (1)

1

fi = occupation of orbital / (with spin-degeneracy included)
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Density functional theory

Kohn-Sham method

Kohn-Sham method: External energy

@ Energy due to external potential; usually Vex = >, —“f—l’m

Eoi = /n(r) Vexe (1) dr
nry = S fln)P

i
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Density functional theory

m method

Kohn-Sham method: Hartree energy

@ Classical electron-electron repulsion

_ ] n(r)n(r) .
B = o e o

= ;_/rn(r) Vi (r) dr
Vu(r) = /rn(r’)

e d

dar
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Density functional theory

m method

Kohn-Sham method: Exchange-correlation energy

@ The remaining component: Many-body complications
combined

= Will be discussed later
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Density functional theory

Kohn-Sham method

Total energy expression

Kohn-Sham (total') energy:

Exslr] = Z—ff@,wzw,} [ 70 Ve ()

1// dr ar + E.

'without ion-ion interaction
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Density functional theory

Kohn-Sham equations

0Eks

Vary the Kohn-Sham energy Es with respect to ¢ (r"): T GA)
/
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Density functional theory Motivation
0C e History
Kohn-Sham method

Kohn-Sham equations

dExs
G

= Kohn-Sham equations
1
{37+ s} ui) = cwitn)

nr) = Y flnP

Vks (r) = Vexe (1) + Vi (r) + Vi (1)

Vary the Kohn-Sham energy Egs with respect to v7 (r"):
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Kohn-Sham equations: Notes

{37+ hsbui@=cm®  n® =T tluoP

@ Equation looking like Schrédinger equation
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Kohn Sham method

Kohn-Sham equations: Notes

1

{57+ s O} w0 =) =i

@ Equation looking like Schrédinger equation

@ The Kohn-Sham potential, however, depends on density
@ The equations are coupled and highly non-linear

@ = Self-consistent solution required
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sity functional theo Motivation
heorem / superce History
Kohn-Sham method

Kohn-Sham equations: Notes

{37+ hsbui@=cm®  n® =T tluoP

@ Equation looking like Schrédinger equation

@ The Kohn-Sham potential, however, depends on density
@ The equations are coupled and highly non-linear

@ = Self-consistent solution required

@ ¢; and ), are in principle only help variables (only egomo
has a meaning)

@ The potential Vs is local
@ The scheme is in principle exact
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Kohn-Sham equations: Self-consistency

@ Generate a starting density "
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Density functional theory

Kohn-Sham method

Kohn-Sham equations: Self-consistency

© Generate a starting density ni"t

@ Generate the Kohn-Sham potential = Vit
@ Solve the Kohn-Sham equations = init
@ New density n'
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Density functional theory

Kohn-Sham method

Kohn-Sham equations: Self-consistency

@ Generate a starting density niit

@ Generate the Kohn-Sham potential = Vit
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Kohn-Sham equations: Self-consistency
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Density functional theory

Kohn-Sham method

Kohn-Sham equations: Self-consistency

@ Generate a starting density niit

@ Generate the Kohn-Sham potential = Vit
@ Solve the Kohn-Sham equations = it
@ New density n'

© Kohn-Sham potential Vi

@ Kohn-Sham orbitals = ]

@ Density n?

Q..

... until self-consistency is achieved (to required precision)
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Density functional theory

Ko m method

Kohn-Sham equations: Self-consistency

@ Usually the density coming out from the wave functions is
mixed with the previous ones, in order to improve
convergence
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Density functional theory

Ko m method

Kohn-Sham equations: Self-consistency

@ Usually the density coming out from the wave functions is
mixed with the previous ones, in order to improve
convergence

@ In metals fractional occupations numbers are necessary

@ The required accuracy in self-consistency depends on the
observable and the expected

DFT in the solid state September 21, 2009 21/61
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m method

Kohn-Sham energy: Alternative expression

@ Take the Kohn-Sham equation, multiply from the left with
fp7 and integrate:

1
o / i () V24 (1) dr + £ / Vis () [ ()R dr = fie;
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Density functional theory

m method

Kohn-Sham energy: Alternative expression

@ Take the Kohn-Sham equation, multiply from the left with
fp7 and integrate:

Y / i (1) V2 (F) dr + £ / Vis (1) [ ()2 dr = fie;

@ Sum over / and substitute into the expression for
Kohn-Sham energy:

Ecslnl = 3 fier— Bn + B —/n(r) Vedr
i

r

DFT in the solid state September 21, 2009 22/61
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Bloch theorem / supercells

Periodic systems

@ In realistic systems there are ~ 102° atoms in cubic
millimetre — unformidable to treat by any numerical
method
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Bloch theorem / supercells

Periodic systems

@ In realistic systems there are ~ 102° atoms in cubic
millimetre — unformidable to treat by any numerical
method

@ At this scale the systems are often repeating (crystals)

@ ...or the observable is localised and the system can be
made periodic

@ Choices: Periodic boundary conditions or isolated
(saturated) cluster
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Periodic systems
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Bloch theorem / supercells

Periodic systems
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Bloch theorem / supercells

Periodic systems

Is it possible to replace the summation over translations L with
a modulation?
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Density functional theory
Bloch theorem / supel

P

Periodic systems

Is it possible to replace the summation over translations L with
a modulation?

Bloch’s theorem

For a periodic potential V (r + L) = V (r) the eigenfunctions
can be written in the form

¥ (r) = e*Tuy (r) |

Uik (r + L) = uik (1)
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Bloch theorem / supercells

Periodic systems: Reciprocal space

Reciprocal lattice vectors:

a» xa
by = 27279
a{-az X as

asz x a
b, = or 9879
do - a3z X a4

a; xa

by — 2 1 2

T— e
dz-a; X as
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Bloch theorem / supercells

Periodic systems: Brillouin zone

@ First Brillouin zone: Part of space closer to the origin than
to any integer multiple of the reciprocal lattice vectors,
K' = niby + nobs + nsbs
y b2

DFT in the solid state September 21, 2009 28/61



Bloch theorem / supercells

Integration over reciprocal space

@ Thus the summation over infinite number of translations
becomes an integral over the first Brillouin zone:

Z = / dk
L kel1.BZ
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Bloch theorem / supercells

Integration over reciprocal space

@ Thus the summation over infinite number of translations
becomes an integral over the first Brillouin zone:

Z = / dk
L kel1.BZ

@ In practise the integral is replaced by a weighted sum of
discrete points:

/dkaWk
k k
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Bloch theorem / supercells

Integration over reciprocal space

@ Thus the summation over infinite number of translations
becomes an integral over the first Brillouin zone:

Z = / dk
L kel1.BZ

@ In practise the integral is replaced by a weighted sum of
discrete points:

/dk = Z Wk
k K
@ Thus eg.
nr)=> w > fltu )
k i
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Bloch theorem / supercells

Periodic systems: Dispersion

| | |
0.0 0.1 0.2 0.3 0.4 0.5
k [2m/a]
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Bloch theorem / supercells

Band structure: Example Pb/Cu(111)

Photoemission vs DFT calculations for a free-standing layer

M - K
r
t t
0.0
= ]
@ ]
s 0.5—_
=) ]
(o) -
o} .
w 1.0+
=A ]
£ .
B© g
£ 154
@ ]
2'0- \/
II[IIIIIIIIITIIII'IIII]II710_
-1.0 -0.5 O‘S)1 0.5 1.0 —— ——
k//(A) M r K

Felix Baumberger, Anna Tamai, Matthias Muntwiler, Thomas Greber and Jiirg

Osterwalder; Surface Science 532-535 (2003) 82-86
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Bloch theorem / supercells

Monkhorst-Pack algorithm

@ Approximate the integral with an equidistance grid of k
vectors with identical weight:

DFT in the solid state September 21, 2009 32/61



Bloch theorem / supercells

Monkhorst-Pack algorithm

@ Approximate the integral with an equidistance grid of k
vectors with identical weight:

2p—q—1
n= 7p_1 q
2q
k,-,-k:n1b1+n2b2+n3b3

+ o+ + [+ +++

+4++ +[++++ L )
+++ [+ +++ Ttk 3 bl i ek
+ 4+ + +[+ + + + e e e
A+ |+ ot |+
4+ +[++ ++ + 4+ [+ +++
S e ++ 4+ [+ +++
A A R [P
i el o e el + 4 |+ +++
+ 4+ |+ +++
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Bloch theorem / supercells

Symmetry operations

@ If the atoms are related by symmetry operation S
(S (r) = 4 (Sr)) the integration over the whole 1st
Brillouin zone can be reduced into the irreducible Brillouin

zone, |BZ

DFT in the solid state September 21, 2009 33/61



Bloch theorem / supercells

Symmetry operations

@ If the atoms are related by symmetry operation S
(S (r) = 4 (Sr)) the integration over the whole 1st
Brillouin zone can be reduced into the irreducible Brillouin

zone, |BZ

Sthi (1) = i (Sr) = &S Uy (Sr) = e Tupe (r) , K = S 'k

DFT in the solid state September 21, 2009 33/61



Bloch theorem / supercells

Symmetry operations

@ If the atoms are related by symmetry operation S
(S (r) = 4 (Sr)) the integration over the whole 1st
Brillouin zone can be reduced into the irreducible Brillouin

zone, |BZ
Sthi (1) = i (Sr) = &S Uy (Sr) = e Tupe (r) , K = S 'k

/kdkz Smo= 3 wh

keBZ kelBZ S
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Bloch theorem / supercells

Irreducible Brillouin zone: Examples

+r++ 40000
g oy +f+++loo0oe
4+t + ol ++++lo0ee
+++++ 00 ++++o0o0e
+++ +|90 00 ++++ooeoe
F + + F|++ o+ FRRFRRRRT (PRI
L o e e e ++ + +[++++
it o ool e o o o A+
.l il .l kL

ok [
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Bloch theorem / supercells

Doubling the unit cell

| 1 | |
0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.25 0.50
k [27/a] k [2m/a’]
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Bloch theorem / supercells

Doubling the unit cell (super-cells)

@ If one doubles the unit cell in one direction, it is enough to
take only half of the k points in the corresponding direction
in the reciprocal space
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Bloch theorem / supercells

Doubling the unit cell (super-cells)

@ If one doubles the unit cell in one direction, it is enough to
take only half of the k points in the corresponding direction
in the reciprocal space

@ And has to be careful when comparing energies in cells
with different size unless either equivalent sampling of k
points is used or one is converged in the total energy in
both cases

DFT in the solid state September 21, 2009 36/61



Plane wave basis set

Summary

© Plane wave basis set
@ Basics of plane wave basis set
@ Operators
@ Energy terms in plane wave basis set
@ Introduction to pseudo potentials
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Basics of plane wave basis set

Plane wave basis set

Kohn—-Sham method

The ground state energy is obtained as the solution of a
constrained minimisation of the Kohn-Sham energy:

min Exs[(0/(1)]

DFT in the solid state
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Basics of plane wave basis set
Operator

Plane wave basis set

Kohn—-Sham method

The ground state energy is obtained as the solution of a
constrained minimisation of the Kohn-Sham energy:

min Exs[(0/(1)]

/ £ (1) y(r)dr = 5
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Basics of plane wave basis set
Operator

Plane wave basis set

Expansion using a basis set

@ For practical purposes it is necessary to expand the
Kohn-Sham orbitals using a set of basis functions

@ Basis set {¢,(r)}V

a=1

@ Usually a linear expansion

M
%i(r) = Caitpa(r)
a=1
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Basics of plane wave basis set

Plane wave basis set

Plane waves

Philosophy

Assemblies of atoms are slight distortions to free electrons

Pa(r) = \%eiGwr
(...=cos(Gy - r)+isin(G, - 1))
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Plane waves
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+ orthogonal

+ independent of atomic positions
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Basics of plane wave basis set
Operator

Plane wave basis set

Plane waves

Philosophy
Assemblies of atoms are slight distortions to free electrons

1 iGq-r

Pa(r) = ﬁe

orthogonal

independent of atomic positions
no BSSE

naturally periodic

H + + +

— many functions needed
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Basics of plane wave basis set
ors

Plane wave basis set

Computational box

@ Box matrix : h = [aq, a, as]
@ Box volume : 2 =deth
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Plane wave basis set

Lattice vectors

@ Direct lattice h = [ay,ap, a3]
@ Translations in direct lattice: L=/-a; +j-as + k- a3
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Basics of plane wave basis set

Plane wave basis set

Lattice vectors

@ Direct lattice h = [ay,ap, a3]
@ Translations in direct lattice: L=/-a; +j-as + k- a3
@ Reciprocal lattice 27(h!)~! = [by, by, b3]

b,‘ . a,- = 277(5,'/'

@ Reciprocal lattice vectors : G=1i-by +j-bo + k - b3
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Basics of plane wave basis set

Plane wave basis set o R
Introduction to pseudo pot

Expansion of Kohn-Sham orbitals

dik(r) = Y ci(G)ekrAT
G

To be solved: Coefficients ci(G)
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Basics of plane wave basis set
Operators

En erms in plane wavi
Introduction to pseudo pote

Expansion of Kohn-Sham orbitals

Plane wave basis set

dik(r) = Y ci(G)ekrAT
G

To be solved: Coefficients ci(G)

Different routes:
@ Direct optimisation of total energy
@ lterative diagonalisation/minimisation
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Plane wave basis set

Dependence on position

@ Translation:
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Plane wave basis set

Dependence on position

@ Translation:

@ Structure Factor:
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Basics of plane wave basis set

Plane wave basis set

Dependence on position

@ Translation:

@ Structure Factor:

@ Derivatives:

do(r—R) e
m—l%:Gs (@(G)e )s,(G)
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Basics of plane wave basis set

Plane wave basis set Intre

Plane waves: Kinetic energy

@ Kinetic energy operator in the plane wave basis:

1 1 1 .
~5V3ea(r) = —5 (G &% =

5 7 G?oa(r)

N —
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Basics of plane wave basis set
Operator

Plane wave basis set

Plane waves: Kinetic energy

@ Kinetic energy operator in the plane wave basis:

1 1 ar 1
—EVZSOG(") = —§(IG) BT = ~ GPypq(r)

2 1 gar_ 1
at e

@ Thus the operator is diagonal in the plane wave basis set

Ekin(G) — GZ

N =

DFT in the solid state September 21, 2009
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Basics of plane wave basis set

Plane wave basis set

Cutoff: Finite basis set

Choose all basis functions into
the basis set that fulfill

1

EGZ S Ecut

— a cut-off sphere
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— a cut-off sphere
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Basics of plane wave basis set
Op

Plane wave basis set

Cutoff: Finite basis set

Introduction

~
Choose all basis functions into 7/
the basis set that fulfil f
{
1 A\
EGZ S Ecut
et
— a cut-off sphere
1 3/2
NPW ~ 277('29EC]H [au]

Basis set size depends on volume of box and cutoff only
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Basics of plane wave basis set
Op S

Plane wave basis set

Cutoff: Finite basis set

~
Choose all basis functions into 7/
the basis set that fulfil f
{
1 A
EGZ S Ecut
2
— a cut-off sphere

1
New ~ 5 5

QEf’u/tz[a.u.]

Basis set size depends on volume of box and cutoff only

— and is variational!

DFT in the solid state

September 21, 2009

46 /61



Basics of plane wave basis set

Plane wave basis set

Plane waves: Fast Fourier Transform

@ The information contained in ¢(G) and ¢ (r) are equivalent

P(G) «— (r)
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f plane wave basis set

B
C
E

Plane wave basis set |

Plane waves: Fast Fourier Transform

@ The information contained in ¢(G) and ¢ (r) are equivalent

P(G) «— (r)

@ Transform from +(G) to ¢ (r) and back is done using fast
Fourier transforms (FFT’s)

@ Along one direction the number of operations « N log[N]
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Plane waves: Fast Fourier Transform

@ The information contained in ¢(G) and ¢ (r) are equivalent

P(G) «— (r)

@ Transform from +(G) to ¢ (r) and back is done using fast
Fourier transforms (FFT’s)

@ Along one direction the number of operations « N log[N]
@ 3D-transform = three subsequent 1D-transforms
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Plane wave basis set

Plane waves: Fast Fourier Transform

@ The information contained in ¢(G) and ¢ (r) are equivalent

P(G) «— (r)

@ Transform from +(G) to ¢ (r) and back is done using fast
Fourier transforms (FFT’s)

@ Along one direction the number of operations « N log[N]
@ 3D-transform = three subsequent 1D-transforms

@ Information can be handled always in the most appropriate
space

DFT in the solid state September 21, 2009 47/ 61



Basics of plane wave basis set

Plane wave basis set

Plane waves: Integrals

Parseval’s theorem

Q) AY(G)B(G) = ; Y A(r)B(r)
G
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Basics of plane wave basis set
Operators
Energy terms in plane wave basis set

Plane wave basis set Introduction to pseudo potentials

Plane waves: Integrals

* Q *
QZGJA (G)B(G) = NZ,:A (r)B(r))

I = /QA*(r)B(r)dr
= ZA*(G)B(G)/exp[—iG -1 exp[iG’ - r]dr
GG’
=Y AY(G)B(G) Qe = Q) A*(G)B(G) O
G

GG/

DFT in the solid state September 21, 2009 48/ 61



lane wave basis set

Plane wave basis set

Plane waves: Electron densﬂy

Z Wicfik| ik (F) Z Wik > Ci(G)ci(G')e/@ )T

G,G’
ZGmax .
nr= > n(G)e°
G:—ZGmax
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BaS|cs of plane wave basis set

Plane wave basis set

Plane waves: Electron density

Z Wicfik| ik (F) Z Wik > Ci(G)ci(G')e/@ )T

G,G’
2Gmax .
nr= > n(G)e°
G:—ZGmax

The electron density can be expanded exactly in a plane wave
basis with a cut-off four times the basis set cutoff.

NPW (4Ecut) — 8NPW ( Ecut)
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Basics of plane
Operators

Plane wave basis set

Plane waves: Operators

@ The Kohn-Sham equations written in reciprocal space:
1

{2V2 + Vks(G, G’)} Vik (G) = v (G)
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Plane wave basis set

Plane waves: Operators

@ The Kohn-Sham equations written in reciprocal space:
1

{2V2 + Vks(G, G’)} Vik (G) = v (G)

@ However, it is better to do it like Car and Parrinello (1985)
suggested: Always use the appropriate space (via FFT)
@ There one needs to apply an operator on a wave function:

>_0(G.G)y (G) = > c(G) (GO|G")
Gl

G/
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Plane wave basis set

Plane waves: Operators

@ The Kohn-Sham equations written in reciprocal space:
1
{577+ Us(@.6) (@) = i (@)

@ However, it is better to do it like Car and Parrinello (1985)
suggested: Always use the appropriate space (via FFT)
@ There one needs to apply an operator on a wave function:

>_0(G.G)y (G) = > c(G) (GO|G")
Gl

G/
@ Matrix representation of operators in: O(G, G’) = (G|O|G’)
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asics of plar
Operators

En

Plane wave basis set Int

Plane waves: Operators

@ The Kohn-Sham equations written in reciprocal space:

{;VZ + Vks(G, G’)} Vik (G) = v (G)

@ However, it is better to do it like Car and Parrinello (1985)
suggested: Always use the appropriate space (via FFT)
@ There one needs to apply an operator on a wave function:
>_0(G.G)y (G) = > c(G) (GO|G")
G’ G
@ Matrix representation of operators in: O(G, G’) = (G|O|G’)
@ Eg. Kinetic energy operator

1 1
Tee = (G| - §V2|G/> = 56256,@

DFT in the solid state September 21, 2009
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. Energy terms in plane wave basis set
Plane wave basis set 9y P

Kohn—-Sham energy

Introduction to pseudo potentials

Exs = Euin + Egs + Ep + Exe J

Eyin Kinetic energy

Egs Electrostatic energy (sum of electron-electron
interaction + nuclear core-electron interaction +
ion-ion interaction)

E,, Pseudo potential energy not included in Egs
E,. Exchange—correlation energy
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Energy terms in plane wave basis set

Plane wave basis set Introduction to pseudo potentials

Kinetic energy

Exin = Z Wiciw (i — Vthk>

= Z Wifik Y _ Ck(G)c(G')(k + G\—*V2|k +G)
GG/

:Zka/kZC/k )Cik(G *|k+G! da,6/
GG’

=2y kasz 5lk+ G|?|cik(G)[?
ik G
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s of plane wave basis set
Op S
Energy terms in plane wave basis set
Introduction to pseudo potentials

Plane wave basis set

Periodic Systems

@ Hartree-like terms are most efficiently evaluated in
reciprocal space via the

Poisson equation

V2Vi(r) = —4mng(r)
G
Vu(G) = 47r”éz)

@ Vu(G) is a local operator with same cutoff as ny
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. Energy terms in plane wave basis set
Plane wave basis set 9y P

Electrostatic energy

Introduction to pseudo potentials

1 ZZ,
-2 f[ e X oo S g

1£J
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Opmnum

Energy terms in plane wave basis set

Plane wave basis set o - ,
Introduction to pseudo potentials

Electrostatic energy

/
) / ZiZ,
ar'dr+ E VI dr+ E
// r— 2 £<|R;—1y| rJ|

1£J

@ The isolated terms do not converge; the sum only for
neutral systems
@ Gaussian charge distributions a’la Ewald summation:

2
nl(r) = _iswﬂ/? exp [— <r _CRI)
(R}) R

@ Electrostatic potential due to n!:

[ (p!
o () r—Ry|
Vcore() /r_r/’dr - |r_Rl|erf|: R?
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plane wave basis set

Energy terms in plane wave basis set

Plane wave basis set s o1
Introduction to pseudo potentials

Electrostatic energy

Electrostatic energy

=21 Q Z ‘ tOt + Eovrl Eself
G40

Z)Z, IR —ry—L]|
ovr erfc

Eserr = Z \/— RC

@ Sums expand over all atoms in the simulation cell, all direct
lattice vectors L; the prime in the first sum indicates that
| < Jis imposed for L = 0.
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. Energy terms in plane wave basis set
Plane wave basis set 9y P

Introduction to pseudo potentials

Exchange-correlation energy

Ep = /r (e (F)dr = O Zejexc(e)n*(e)

@ =(G) is not local in G space; the calculation in real space
requires very accurate integration scheme.

@ If the function e (r) requires the gradients of the density,
they are calculated using reciprocal space, otherwise the
calculation is done in real space (for LDA and GGA; hybrid
functionals are more intensive)
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of p\sme

s in plane wave basis set
o pseudo potentials

FFT

n(r) — n(G)
Ve [N](r) Ves(G)
ES

Vies(F) = Vie[n](r) + Viss(r) NiFTF i Vis(G)

Yik(r) g Yik(G)
Vks(r)vi(r) M kst (G)
- update ik (G)

(M) P Vi(G)

n(r) = X Wi | (1)
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Energy terms in plane wave basis set
Introduction to pseudo potentials

Plane waves: Calculation of forces

Plane wave basis set

@ With the plane wave basis set one can apply the

Hellmann-Feynman theorem

(Fi=)-

R, = (V| Hgs | V) = —(V | HKS\‘W
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of pl set
Operators

Energy terms in plane wave basis set
Introduction to pseudo potentials

Plane waves: Calculation of forces

Plane wave basis set

@ With the plane wave basis set one can apply the

Hellmann-Feynman theorem

(Fi=)-

R, = (V| Hgs | V) = —(V \ HKS\‘W

@ All the terms where R, appear explicitly are in reciprocal
space, and are thus very simple to evaluate:

0 . j
e—lG~R[ — 7’Ge_IG.RI

OoR,
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Energy terms in plane wave basis set

Plane wave basis set Introduction to pseudo potentials

Plane waves: Summary

@ Plane waves are delocalised, periodic basis functions
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. Energy terms in plane wave basis set
Plane wave basis set 9y P

Plane waves: Summary

Introduction to pseudo potentials

@ Plane waves are delocalised, periodic basis functions

@ Plenty of them are needed, however the operations are
simple

@ The quality of basis set adjusted using a single parametre,
the cut-off energy
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simple

@ The quality of basis set adjusted using a single parametre,
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Energy terms in plane wave basis set

Plane wave basis set Introduction to pseudo potentials

Plane waves: Summary

@ Plane waves are delocalised, periodic basis functions

@ Plenty of them are needed, however the operations are
simple

@ The quality of basis set adjusted using a single parametre,
the cut-off energy

@ Fast Fourier-transform used to efficiently switch between
real and reciprocal space

@ Forces and Hartree term/Poisson equation are trivial

@ The system has to be neutral! Usual approach for charged
states: Homogeneous neutralising background

@ The energies must only be compared with the same E.
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Plane wave basis set

Introducnon to pseudo potentials

Why use pseudo potentials?

@ Reduction of basis set size
effective speedup of calculation
@ Reduction of number of electrons
reduces the number of degrees of freedom
For example in Pt: 10 instead of 78
@ Unnecessary “Why bother? They are inert anyway...”
@ Inclusion of relativistic effects
relativistic effects can be included "partially" into effective
potentials
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Pseudo potential

Introduction to pseudo potentials

What is it?

@ Replacement of the all-electron, —Z/r problem with a
Hamiltonian containing an effective potential

DFT in the solid state September 21, 2009 61/61



X n plan
Plane wave basis set ;

Pseudo potential

Introduction to pseudo potentials

What is it?

@ Replacement of the all-electron, —Z/r problem with a
Hamiltonian containing an effective potential

@ It should reproduce the necessary physical properties of
the full problem at the reference state

DFT in the solid state September 21, 2009 61/61



Plane wave basis set

Pseudo potential

What is it?
@ Replacement of the all-electron, —Z/r problem with a
Hamiltonian containing an effective potential

@ It should reproduce the necessary physical properties of
the full problem at the reference state

@ The potential should be transferable, ie. also be accurate
in different environments
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Plane wave basis set

Pseudo potential

What is it?
@ Replacement of the all-electron, —Z/r problem with a
Hamiltonian containing an effective potential

@ It should reproduce the necessary physical properties of
the full problem at the reference state

@ The potential should be transferable, ie. also be accurate
in different environments
The construction consists of two steps of approximations
@ Frozen core approximation
@ Pseudisation
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