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We report on exact-diagonalization studies of correlated many-electron states in the half-filled Landau
levels of graphene, including pseudospin (valley) degeneracy. We demonstrate that the polarized Fermi sea of
non-interacting composite fermions remains stable against a pairing transition in the lowest two Landau levels.
However, it undergoes spontaneous depolarization, which is unprotected owing to the lack of single-particle
pseudospin splitting. These results suggest the absence of the Pfaffian phase in graphene.
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1. Introduction

The continued interest in the physics of a half-filled
Landau level (LL) is motivated by its mapping onto the
system of composite fermions (CFs) [1] in zero effective
magnetic field B∗ (the CFs are weakly interacting quasi-
particles which experience a reduced effective field B∗,
formed by the electrons through capturing vortices of
the many-body wave function). At B∗ = 0, the non-
-interacting CFs form a Fermi sea. However, even weak
attractive interactions among the CFs may lead to their
pairing and to the formation of an incompressible liq-
uid phase. The Moore–Read “Pfaffian” wave function [2]
describing a paired CF liquid state supports quasiparti-
cles with non-abelian braiding statistics [3], thus possibly
opening the way to fault-protected topological quantum
computation [4]. A wealth of numerical studies [5] have
established the Pfaffian state as a promising candidate for
the experimentally observed [6] fractional quantum Hall
ground state in a half-filled second LL of conventional
semiconductors, such as GaAs. However, the very small
gap of this state in GaAs (hundreds of mK) [7] makes its
applications very challenging.

We investigate the possibility of this non-abelian phase
appearing in half-filled LLs of graphene (characterized by
a larger Coulomb energy scale than GaAs due to a lower
dielectric constant and atomic thickness of a quasi-2D
layer). Emergence of the Pfaffian phase requires a par-
ticular form of the interaction among the electrons inside
a given LL — such as to support formation of CFs and
to induce an interaction among the CFs themselves —
such as to lead to their pairing at B∗ = 0. Hence, the
question under consideration is that of CF dynamics in
different LLs of graphene. The lack of immediate analogy
with GaAs is a consequence of different single-particle or-
bitals defining all but the lowest LL, and of an additional

“pseudospin” freedom associated with valley degeneracy
in graphene. We find that, in this model, the CF–CF
interaction in graphene is insufficient to induce pairing
at B∗ = 0, and also that the polarized CF Fermi sea is
unstable against depolarization of pseudospin.

2. Interaction pseudopotentials

Interaction within an isolated LL is defined by pseu-
dopotentials Vm (pair interaction energy as a function of
relative angular momentum m). Except for the lowest
LL, the pseudopotentials in graphene are different from
those of GaAs due to the presence of a pair of atomic
sublattices in its hexagonal crystalline structure. For the
planar geometry, their analytic expressions have been de-
rived earlier [8, 9]. They were used in previous many-
-body calculations (e.g., [10]) carried out in a more con-
venient spherical geometry (with N electrons confined to
the surface of a sphere and exposed to a magnetic flux
2Qhc/e), where the planar pseudopotentials for the n-th
LL were truncated at m = 2(Q + n) ≡ Nφ (here, Nφ + 1
is the LL degeneracy; and Nφ stands for the magnetic
flux of a corresponding system in the lowest LL).

The above approach disconnects Vm from its Coulomb
potential V (r) ∼ 1/r (especially at long range, compa-
rable to the sphere radius, i.e., for m approaching Q).
Therefore, we instead have adopted a direct solution of
the Dirac problem on a sphere [11]. In excited LLs of
graphene, the single-particle states ||n,m〉〉 are spinors,
whose two components represent standard LL wave func-
tions, with equal angular momenta m but different LL
indices n and n − 1. It is essential that they must have
equal Nφ (and thus different 2Q). In this convention,
the Coulomb matrix elements of graphene 〈〈. . .〉〉 are ex-
pressed as averages over the corresponding two-body ma-
trix elements of GaAs 〈. . .〉, all taken at the same Nφ:

(592)
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4 〈〈n,m1; n,m2|V |n, m3; n,m4〉〉
= 〈n,m1;n, m2|V |n,m3;n,m4〉
+ 〈n− 1,m1;n, m2|V |n− 1,m3; n,m4〉
+ 〈n,m1; n− 1,m2|V |n,m3;n− 1, m4〉
+ 〈n− 1,m1;n− 1,m2|V |n− 1,m3; n− 1,m4〉 .

(1)
The pseudopotentials (describing graphene in the spher-
ical geometry and correctly linked to the Coulomb po-
tential ∼ 1/r) shown in Fig. 1 are then obtained from
the above matrix elements by diagonalization of the two-
-electron problem.

Fig. 1. Coulomb pseudopotentials Vm in the lowest
LLs of graphene, calculated in the planar (a) and spher-
ical (b) geometries; λ = (hc/eB)1/2 is the magnetic
length.

3. CF Fermi sea in polarized systems

Using matrix elements appropriate for the spherical
geometry, we have first looked at the correlated N -
-electron states at Nφ = N/ν−σ with the “filling factor”
ν = 1/2 (corresponding to the half-filled LL) and various
“shifts” σ. By analogy with a number of known cases,
any extended incompressible liquid state is expected to
be represented on a sphere by a series of uniform (i.e.,
having zero total angular momentum, L = 0) finite-size
states (N , Nφ) with constant ν and σ (the latter also
deduced from the particular form of the extended many-
-body wave function, albeit in a less obvious way than ν).
Understandably, the correlation energy, pair correlation
function, and all other features of the state should de-
pend smoothly on N along the series, and extrapolate to
those describing an extended state on a plane.

We found that the non-abelian Pfaffian wave func-
tions have only moderate overlaps with the correspond-
ing (σ = 3) exact N -electron Coulomb ground states
in any LL of graphene. Moreover, their dependence
on the system size N reveals the emergence of a shell
(CF–LL) structure of the (essentially) non-interacting
CFs at B∗ = 0 rather than the formation of a uniform
phase which could be adiabatically connected to the Pfaf-
fian state, representing a paired CF liquid. This is il-
lustrated in Fig. 2, showing also a comparison of the
Coulomb energies with the Pfaffian states.

Fig. 2. (a) Squared overlaps |χ|2 of the exact Pfaf-
fian state with the lowest L = 0 Coulomb eigenstate
at the half-filling of different LLs in graphene (at the
same shift σ = 3), plotted as a function of an inverse
electron number N−1. (b) Difference ∆E between the
average Coulomb energy of the Pfaffian and the exact
energy of the lowest L = 0 Coulomb eigenstate, also at
ν = 1/2 and σ = 3, and for different LLs of graphene,
versus N−1.

The emergence of a shell structure is most evident in
Fig. 3 showing the size dependence of the ground state
correlation energy E (counted per particle, including the
charge compensating background, and found separately
for each shift σ). The dominant tendency is the CF shell
filling, with low values of E coincident with exact filling
of an indicated number of the CF–LLs.

Fig. 3. Correlation energies per particle in N -electron
ground states corresponding to the half-filling of the
lowest (a) and second (b) LL in graphene. Shift σ and
the number of filled CF–LLs are explained in the text.

Let us illustrate this tendency for a couple of examples.
At ν = 1/2, the (N, Nφ) = (N, 2N−σ) states of strongly
interacting electrons map onto the non-interacting CF
states at N∗

φ = Nφ−2(N−1) = 2−σ (the N∗
φ ∼ N0 scal-

ing being consistent with B∗ = 0). For σ = 3, this gives
N∗

φ = −1. Negative sign means that the direction of an
effective magnetic flux 2Q∗, producing effective degener-
acy |N∗

φ |+1 = 2 of the lowest CF LL, is oriented opposite
to the original magnetic flux 2Q [12]. The degeneracy of
the n∗-th CF–LL is |N∗

φ |+1+2n∗. For N = 20, four low-
est CF–LLs are filled, and so this finite-size ν = 1/2 state
is “aliased” with the incompressible ν∗ = −4 CF state,
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corresponding to the electron filling factor ν = 4/7 [12].
Hence, a relatively low correlation energy of this state is
found in both frames of Fig. 3. Similarly, three lowest
CF–LLs are full for N = 12, this state being aliased with
ν∗ = −3 (corresponding to ν = 3/5) and thus also having
low energy in Fig. 3. For σ = 4 (yielding N∗

φ = −2) and
N = 16, there are three full CF–LLs and an additional
single CF in the n∗ = 3 level with the single-particle an-
gular momentum equal to |N∗

φ |/2 + n∗ = 4, yielding an
L = 4 state (aliased with the single CF-quasiparticle in
an incompressible ν∗ = 3 state) with a somewhat higher
correlation energy than in the case of complete CF–LL
filling. Finally, for σ = 3 and N = 16, there are four CFs
in a half-filled n∗ = 3 CF–LL with angular momentum
|N∗

φ |/2 + n∗ = 7/2. The four-CF spectrum depends on
the form of residual CF–CF interaction; here, the lowest
state has L = 8 and a relatively high correlation energy
in Fig. 3. These findings are consistent with the previous
studies [8, 10]. The second LL (n = 1) behaves similarly
to the lowest, also hosting a Fermi sea of nearly free CFs
rather than an incompressible liquid of paired CFs.

4. Pseudospin depolarization

Spin polarization at ν = 1/2 (or in any other quantum
Hall state in a high magnetic field) can in principle be
enforced by a Zeeman splitting. However, in graphene
one must also consider an additional “pseudospin” degree
of freedom associated with the valley degeneracy. In fact,
inclusion of the pseudospin in an analysis of the low-
-energy dynamics in graphene is of crucial importance
as its depolarization is not protected by a single-particle
splitting (in the absence of external potentials, or lattice
distortions, that might break the valley degeneracy).

Fig. 4. Similar to Fig. 2, but for the spin-unpolarized
N -electron ground states at the half-filling in the low-
est two LLs of graphene (for comparison, the polarized
σ = 3 series is also shown with grey symbols).

Hence, we have included the single-electron pseudospin
(pz = ±1/2) in our diagonalization and classified the N -
-electron eigenstates by the total pseudospin P and its
projection Pz. Dependence of the correlation energy E
on size N , analogous to Fig. 3 but for the unpolarized
states (P = 0), is shown in Fig. 4. Especially for n = 0
it is evident that a half-filled state undergoes a spon-
taneous pseudospin depolarization (e.g., the unpolarized

series with σ = 1, 3, and 4 clearly extrapolate to lower
energies than any polarized series).

5. Conclusion

Using exact numerical diagonalization we have studied
the correlated many-electron states in different half-filled
LLs of graphene, including pseudospin (valley) degener-
acy. We have found that even assuming the full spin and
pseudospin polarization, the non-abelian Pfaffian state is
not realized in graphene (at a half-filling of any LL). In-
stead, the essentially free CFs would form a Fermi sea
in both lowest LLs if full polarization could be enforced
(in higher LLs a striped order is most likely, but discus-
sion of this issue has not been included). We also found
that the half-filled ground states in both lowest two LLs
undergo spontaneous depolarization of the pseudospin,
which cannot be protected by a single-electron splitting
(analogous to the Zeeman effect for spin). Together, our
results point to the absence of a non-abelian Pfaffian
phase in graphene.
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