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Artificial Square Ice and Related Dipolar Nanoarrays
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We study a frustrated dipolar array recently manufactured lithographically by Wang et al. [Nature
(London) 439, 303 (2006)] in order to realize the square ice model in an artificial structure. We discuss
models for thermodynamics and dynamics of this system. We show that an ice regime can be stabilized by
small changes in the array geometry; a different magnetic state, kagome ice, can similarly be constructed.
At low temperatures, the square ice regime is terminated by a thermodynamic ordering transition, which
can be chosen to be ferro- or antiferromagnetic. We show that the arrays do not fully equilibrate
experimentally, and identify a likely dynamical bottleneck.
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FIG. 1 (color online). Left: Atomic force microscope image of
an array studied in Ref. [3]. The islands have length l � 220 nm,
width 80 nm and thickness 25 nm. Right: Map of the ratio J2=J1

of the second to the first nearest-neighbor interactions (high-
lighted in the left part) for different values of lattice constant, a,
and sublattice height offset, h. In the white zone, jJ2=J1 � 1j<
5%. In the left (blue) region, the ordered state is antiferromag-
netic, whereas it is ferromagnetic in the right (yellow-red) area.
Introduction.—The ability to manipulate constituent de-
grees of freedom of condensed matter systems and their
interactions is fundamental to attempts to advance our
understanding of the variety of phenomena presented to
us by nature. For a long time this has been achieved by
utilizing the combinatorial richness of the periodic table of
elements to construct different chemical compounds.

A more recent option is to use the tools of nanotechnol-
ogy to custom tailor degrees of freedom which can be
assembled in a highly controlled manner; e.g., this has
been proposed for realizing a topologically protected quan-
tum computer using Josephson Junction arrays [1].
Submicron superconducting rings have also been used to
provide effective spin-1=2 degrees of freedom [2].

Very recently, Wang and collaborators have used litho-
graphic techniques to create a periodic two-dimensional
array of single-domain submicron ferromagnetic islands
[3], depicted in Fig. 1. This design approach takes advan-
tage of well-established lithographic techniques and ena-
bles reading of the state of the system with local probes,
such as magnetic force microscopes, to image the state of
single constituent magnetic islands [4].

The first aim of this study is to assemble a system that
realizes the square ice model. This is an attractive target
model because of its long and distinguished history during
which algebraic correlations and a finite entropy at zero
temperature have been established, as well as connections
to exact solutions, quantum magnetism, unusual dynamics,
and gauge theories [5].

The pioneering study by Wang et al. raises a number of
important questions which we try to address here. First,
what are appropriate models for the arrays’ thermodynam-
ics and dynamics? Second, what other systems can one
hope to build with these techniques? And third, what are
interesting directions in which further developments would
be desirable?

In particular, the question of whether a dipolar system
with long-range interactions can be modeled by the short-
range ice model is rather similar to the one posed in the
case of (three-dimensional) dipolar spin ice, where it was
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found that a nearest-neighbor description was surprisingly
accurate for a range of properties, such as the low-
temperature (Pauling) entropy [6–10].

In this Letter we show that an analogous equivalence
between ice states and the ground states of two-
dimensional dipoles on the links of the square lattice is
more delicate. However, it can be established via a route
quite different from the three-dimensional case, namely, by
(a) placing the dipoles pointing in different directions onto
slightly different heights and (b) manufacturing the dipoles
as elongated as possible. It turns out to be easier to realize
kagome ice in a dipolar array, as the requisite symmetry is
compatible with embedding in a plane.

As a byproduct, the low-temperature antiferromagnetic
(in ice language: antiferroelectric) instability of the origi-
nal model can be designed to be replaced by a ferromag-
netic one. However, the experiments observe no ordering
transition, implying that the array does not fully equili-
brate. We are thus led to study a phenomenological model
for its dynamics: zero-temperature (‘‘greedy’’) stochastic
dynamics subject to an energy barrier for spin flips. This
2-1 © 2006 The American Physical Society
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reproduces the experimental measurements semiquantita-
tively. Such dynamics are insufficient to anneal out isolated
defects violating the ice rules even for strong interactions,
thus preventing the establishment of an ice—or indeed an
ordered—configuration.

In the remainder of this Letter, we first analyze—by a
mean-field theory and using Monte Carlo simulations—
the equilibrium statistical mechanics of arrays designed to
mimic square and kagome ice. We then turn our attention
to the dynamics of the arrays studied in Ref. [3] and present
our results for the local correlations. We conclude with a
brief discussion of disorder and an outlook.

Dipoles on the links of a square lattice.—The interac-
tions between the magnetic islands are dipolar, and there-
fore essentially a geometric property of the array (lattice
constant: a), described by the Hamiltonian

H �
ZZ

d~rid~rj
~�� ~ri� � ~��~rj� � 3� ~�� ~ri� � r̂ij�� ~�� ~rj� � r̂ij�

r3
ij

;

(1)

where ~rij � ~ri � ~rj, and ~�� ~ri� is the dipole moment at ~ri,
which points along the link. We treat the dipoles either as
points (l=a! 0) or as uniform, monodomain thin needles
of finite length l.

Can such an arrangement be used to access square ice
physics? In other words, is there a (low-temperature) re-
gime for such a dipolar system, where configurations obey-
ing the ice rule are overwhelmingly present with
approximately equal weights?

This is, by construction, the case for the ‘‘Ising-ice
model,’’ in which the four islands emanating from a given
vertex of the square lattice interact equally and antiferro-
magnetically, so that in the ground state two dipoles point
into each vertex, and two out. These are precisely the ice
states. The Fourier transform of this interaction has two
branches (as there are two sites in the unit cell, one for each
link direction of the square lattice), which have eigenvalues

~J l�q� � 0; ~Ju�q� � 2J
�
sin2 qx

2
� sin2

qy
2

�
: (2)

It is the flatness of the lower branch that indicates the
frustration of the ice model. As all the ice states are linear
combinations of the flat-band eigenvectors only, a suffi-
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FIG. 2 (color online). Left: Spectrum for artificial ice (cut off
after 10a, for pointlike dipoles). Right: same for l=a � 0:7 and
h=a � 0:207: the lower band becomes almost flat, (less than
1.5% of the total bandwidth).
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cient condition for Eq. (1) to yield an ice regime is that its
lower branch be flat and share the eigenvectors of the Ising-
ice model [10], at least approximately.

By contrast, for a nearest-neighbor interaction only, one
obtains a symmetric pair of bands:

Jl;u�q� � 	2J
��������sin

qx
2

sin
qy
2

��������: (3)

The spectrum for artificial ice (Fig. 2) lies in between,
with a substantial dispersion to the flat ‘‘ice’’ band, of
about a third of the total bandwidth. Thus, there is a
thermodynamic transition to antiferromagnetic order,
which in our Monte Carlo simulations occurs at tempera-
ture Taf � 1:70�5�J1 (where Jn is the strength of the nth-
neighbor interaction, see examples in Fig. 1).

The principal reason for the dispersion of the lower band
is the inequivalence—as in the F model—of the six
vertices of the ice model, which fall into two groups.
One pair (labeled Type I in Ref. [3], see Fig. 3) has zero
total magnetic moment, while the others (Type II) have a
net moment along a diagonal and are higher in energy. This
inequivalence results from the fact that, unlike the case of a
tetrahedron in d � 3, the six bonds between the four
islands belonging to a vertex are not all equivalent.

However, this can be remedied by introducing a height
displacement h between magnetic islands pointing in the x
and y directions.

The ratio J2=J1 of the two inequivalent bond energies
[Eq. (1)] is shown in Fig. 1 as a function of h=a and l=a.
There is a set of choices for these parameters such that the
interaction energies are approximately equal. For pointlike
dipoles (l=a! 0), this value is

hice=a �
�������������������������������
�3=8�2=5 � 1=2

q

 0:419; (4)

and taking into account the finite extension of the dipoles
lowers the required height offset. For instance, for l=a �
0:7, hice=a 
 0:207. In principle, for 1� l=a � �! 0,
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FIG. 3 (color online). Ising-ice vs dipolar arrays: frequency of
vertex types (% deviation from random distribution for single
vertex, which is 1

8 , 1
4 , 1

2 , and 1
8 for Types I–IV, respectively),

entropy (S), and heat capacity (C) from Monte Carlo simula-
tions; x axes were scaled for high-T asymptotics to coincide. The
fraction of non-ice-rule vertices is below 1% for T < 0:42J for
all depicted systems. At low T, the ice regime, which widens
with increasing l=a, is terminated by ferro- (dashed) or
antiferromagnetic (dots) order for different h.
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FIG. 4 (color online). Frequency of vertex types (as in Fig. 3).
Interaction energies scale approximately as 1=a3, a factor of 30
between the extremal points. Experiments (symbols) are shown
against dynamics simulations for needle dipoles [Eq. (1), dotted
line], and for increased J2 (dashed line, see text).
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hice=a�
���
2
p
�! 0. However, in this ideal limit the effects

of disorder, finite transverse width and a possible internal
structure of the dipoles will all play a role.

Having fixed the short-distance trouble by introducing
the modulation in height, the question remains what hap-
pens to the long-distance part of the dipolar interaction,
which in d � 3, amazingly, turned out to leave the ice
regime intact [7,9]. However, the mechanism responsible
for this equivalence in d � 3 [10] is not operational in d �
2, as it requires the dimensionality of the dipolar interac-
tion to coincide with that of the underlying lattice. Here,
however, we have a d � 3, 1=r3 dipolar interaction in a
d � 2 array. Nonetheless, the present situation is relatively
benign, as the Fourier sum of a 1=r3 interaction in d � 2 is
absolutely convergent (obviating the need for an Ewald
sum).

Further-neighbor terms can be suppressed parametri-
cally in the ideal limit of l=a! 1. The ratio Jn
3=J1;2

vanishes as �! 0, thus yielding the ideal Ising-ice model.
As l=a is reduced, the flat band initially acquires only a
small dispersion. To demonstrate this, in Fig. 2 we have
plotted the mode spectrum for l=a � 0:7, which corre-
sponds to the a � 320 nm sample [3]. The overlap of its
eigenvectors with those of the Ising-ice model differs from
1 by less than 0.1% over the entire Brillouin zone.

This demonstrates that an ice regime can be obtained by
this route. Our Monte Carlo simulations on the dipolar and
the Ising-ice model for l=a � 0:7 (Fig. 3) bear out this
statement: the intermediate ice regime is terminated at high
T by thermally activated defects violating the ice rules, and
at low T by an ordering transition. Choosing h on either
side of the optimal value hice, this transition is ferro/anti-
ferromagnetic, respectively, and perhaps even to a more
complicated state very close to hice.

Kagome ice.—The ground states of antiferromagnetic
Ising spins on the kagome lattice define what is known as
kagome ice, with the ‘‘ice rules’’ requiring each triangle to
have one spin pointing in and two out, or vice versa [11].
Since the sites of the kagome lattice correspond to the links
of the honeycomb lattice, one can pose the question
whether a dipolar array forming a honeycomb lattice will
display a kagome ice regime.

The case of kagome ice has the advantage that the
three bonds of the triangle are equivalent, unlike the six
bonds of the square. This means that the nearest-neighbor
Hamiltonian does not require any fine-tuning through a
height offset. Furthermore, using the above limit of �! 0,
we can again parametrically suppress the importance of
further-neighbor interactions, and hence obtain a represen-
tation of kagome ice. The vestiges of the further-neighbor
terms will again give rise to an ordering transition, termi-
nating the ice phase on its low-T side. We note that kagome
ice is a phase distinct from square ice in that its long-
wavelength theory is different—its correlations are not
algebraic, but exponentially short ranged even at zero
temperature.
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Dynamics and annealing.—Given the impossibility of
thermally equilibrating the array, the authors of Ref. [3]
used a rotating magnetic field Bext, gradually stepped
down, to speed up the dynamics [12]. The question whether
such an ‘‘algorithm’’ can be efficiently used to find the
ground state of a system has been discussed in the context
of spin glasses [13]. (However, in the case of an ice regime,
the question is somewhat simpler, namely, whether it is
possible to find one of exponentially many ice
configurations.)

For our model of dipolar needles, the energy scales for
the arrays studied in Ref. [3] are

“Zeeman” energy: j� � Bextj � 2:6� 106 K:

“Exchange”: 3:6� 103 K � J1 � 1:1� 105 K:
(5)

Antiferromagnetic long-range order should thus be present
at room temperature.

We consider a phenomenological model for the dy-
namics, motivated by the experimental protocol. First,
with the experimental temperatures well below the inter-
action strengths, we use a form of zero-temperature
Monte Carlo dynamics. Second, we note that vertices
violating the ice rules are experimentally present through-
out. As such defect vertices can be removed using single
spin flips only, we impose a constraint on our single-spin-
flip dynamics: for a flip to be accepted the energy gain must
be above a threshold �. Third, the rotating field is modeled
by a field of random orientation.

This model has two free parameters: the threshold � and
the speed with which the field is ramped down, �. We fix
these parameters to be the same for all arrays, and fit them
to obtain the best agreement with the experimental mea-
surements of the local correlations (longer-range correla-
tions in the experiment are very weak) [3]. The best fit is
obtained for � � 2:3� 105 K and � � 87 T�1 attempted
flips per spin during ramp-down (Fig. 4).

This algorithm gives semiquantitative agreement with
experiment over a range of interaction energies differing
by a factor of 30 [Eq. (5)]. However, we systematically
overestimate the frequency of Type I vertices compared to
those of Type II (as do other algorithms we have studied).
2-3
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This appears to be due to our needle model [Eq. (1)] over-
estimating the ratio J1=J2. Denoting Eij �

Ei�EI
Ej�EI

, where Ei
is the energy of an isolated Type i vertex, Ref. [3] finds
from a finite-element simulation: E32 > 2, E42 > 6 for
l=a � 0:7. If we reduce the value of jJ1 � J2j from
Eq. (1) by 30%, our values grow from E32 � 1:7, E42 �
4:9, to 2.25 and 7, respectively. The resulting fit (Fig. 4,
dashed lines) appears noise limited [14].

Even for the strongest interactions, about 25% (non-ice-
rule) defects, Type III vertices, persist. Whereas it is easy
to remove pairs of appropriately oriented neighboring de-
fects by flipping the spin which joins them, such an anni-
hilation process occurs with low probability once these
defects are sparse: they first need to diffuse around until
they encounter a partner.

Disorder.—Our dynamical model does not take into
account disorder, which is expected to have substantial
influence on the dynamical behavior even of single islands
[4]. Thus, the good agreement of our model with the
experiment might be due to its correct reproduction of
the dynamical bottleneck, and not the detailed microscopic
dynamics: the inability of the defects to ‘‘find’’ one another
may, e.g., simply be due to their becoming pinned.

Disorder also impacts the ice regime thermodynami-
cally, as the size of the leading perturbation sets the scale
for its termination at low temperature. Especially for fine-
tuned h� hice, disorder might dominate (over J1 � J2 and
further-neighbor interactions), by selecting some ice con-
figurations over others; strong disorder might even lead to
the presence of defects at any temperature.

To push the analysis further in this direction, experimen-
tal input would be desirable. What is the variance of the
islands’ geometrical properties? Are there some islands
that freeze at much higher fields than others? Are defects
usually located at the same positions, and what is their
spatial distribution? How do correlations evolve during the
ramp-down of the external field?

Summary and outlook.—We have presented models for
the dynamics and thermodynamics of frustrated dipolar
arrays, including ways of stabilizing ice regimes. Perhaps
the most interesting direction of further study involves their
dynamics, in the presence of varying degrees of disorder. In
particular, can other protocols [13], e.g., involving the use
of ac magnetic fields, be used to speed up the dynamics?
Note that in present samples, the largest interaction ener-
gies are more than 2 orders of magnitude above room
temperature, so that further miniaturization is possible
without resorting to cryogenics.

Better equilibration might then open the door for an
experimental study of constrained classical [15] and per-
haps eventually even quantum dynamics [2] (and quantum
ice [16]). Even though this will require a substantial ex-
perimental effort, there appears to be no fundamental
obstacle to obtaining at least a classical ice regime.
23720
The results obtained along the way should provide in-
sights into how the physics of frustration can lead to new
ways of effectively suppressing interactions between
neighboring magnetic nanoislands and into the limits im-
posed by disorder, a topic of interest with view to applica-
tions in memory storage [4]. We are thus optimistic that
dipolar nanoarrays will provide an interesting field for
further studies.

We thank P. Schiffer for several very helpful explana-
tions and for assistance with the figures, and C. Henley,
A. Middleton, S. Sondhi, and O. Tchernyshyov for useful
discussions. Some of our simulations made use of the
ALPS library [17]. This work was in part supported by
the Ministère de la Recherche et des Nouvelles
Technologies with an ACI grant.
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