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We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice
versions of multicomponent fractional quantum Hall systems. Although the original band structure is
distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing
a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local
many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian
fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with
the genus of space. This sensitivity of topological degeneracy to defects provides a “proof of concept”
demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a
varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that
genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom
systems with already existing holographic beam shaping methods for creating twist defects.
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Introduction.—Extrinsic defects embedded in topologi-
cally ordered phases of matter [1–5] may acquire exotic
properties [6–22]. Genons [11,12], named after their ability
to effectively increase the genus of space thus enhancing the
topological degeneracy, are particularly intriguing represent-
atives of this idea and can be visualized as twist defects at the
ends of branch cuts connecting separate “world sheets” of
different components in the host system. Importantly, the
linkage of genons to the topology of space and the under-
lying topological order establishes them as powerful tools to
overcome the long-standing challenge of accessing topo-
logical orders on surfaces with tunable genus. It also imparts
them with nontrivial quantum dimensions and braiding
statistics that are significantly different from those of
intrinsic quasiparticles of the host system [12], thus enabling
fault tolerant topological quantum computation [23,24] even
in Abelian host states without this capability and extending
our knowledge of topological order. However, while the
beautiful idea of genons is based on topological field theory
[11,12] and corroborated by complicated exactly solvable
models [6,10,16], its actual relevance to realistic microscopic
models has remained open.
In this Letter, we fill this void by presenting the first

evidence of genons in a microscopic lattice model which can
favor lattice fractional quantum Hall states, i.e., fractional
Chern insulators [25,26], and naturally host defects. With a
scheme to offset the negative influence of defects on the
band structure, we obtain compelling results that explicitly
demonstrate the remarkable fingerprint of genons—the
nontrivial dependence of the topological degeneracy on

the number of defects which effectively tune the genus of
space to high numbers. Our results provide a deep insight
into the physical realization of genons in simple lattice
models involving only single-particle hopping and on site
two-body interactions, thus opening up the experimental
accessibility of topological orders on high-genus surfaces.
Model.—We consider particles in a two-dimensional

square lattice with two internal degrees of freedom (referred
to as “layers” for convenience) σ ¼ ↑;↓ on each lattice site
and an effective magnetic flux ϕ piercing each elementary
plaquette (Fig. 1). We introduce Z2 twist defects [12] into
the lattice such that a particle’s layer index is flipped when
it moves around such a defect once. It is helpful to imagine

FIG. 1. Our model is equivalent to two square lattice layers
(blue and red) where each plaquette is pierced by an effective flux
ϕ (upper left panel). We only plot nearest-neighbor hopping for
simplicity. Defects are introduced through branch cuts (trans-
parent gray) where the particles switch layer (green). We study
systems with up to two such branch cuts, corresponding to
topologies resembling wormholes, as displayed in the bottom
panels.
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that the layer flipping occurs precisely when a particle hops
across a branch cut that we take to connect a pair of defects
in a straight line (Fig. 1). We thus formulate the tight-
binding Hamiltonian as

H0 ¼
X

j;k;σ

tðzj; zkÞa†j;F njk ðσÞak;σ; ð1Þ

where a†j;σ (aj;σ) creates (annihilates) a particle in layer
σ at lattice site zj ¼ xj þ iyj, and F njkðσÞ accounts for
njk flips of the initial layer σ when a straight line from zk
to zj intersects with njk branch cuts. The hopping coef-

ficient from zk to zj is designed as tðzj; zkÞ ¼
ð−1Þxþyþxye−ðπ=2Þð1−ϕÞjzj2e−iπϕðxjþxkÞy [27,28], where
z ¼ zj − zk ¼ xþ iy. Such a hopping is local in the sense
that tðzj; zkÞ follows a superexponential decay. We focus on
ϕ ¼ 1=q with integer q, for which a unit cell contains q
sites in the x direction. Without defects, H0 has a Z2

symmetry associated with exchanging two layers and
corresponds to two decoupled Kapit-Mueller models [27]
in the Landau gauge; thus, its lowest band contains two
copies of an exactly flat band with Chern number C ¼ 1.
The effective topology of our model strongly depends on

the number of branch cuts (Fig. 1). If each layer has a torus
geometry, a branch cut plays the role of a wormhole
connecting two tori [11]; hence, M branch cuts effectively
lead to a single surface with genus g ¼ M þ 1. In the
following, we arrange all branch cuts in the y direction
without loss of generality [29], denoting the branch cut
connecting a pair of defects at ðX1; Y1Þ and ðX1; Y2Þ as
ðX1; Y1 → Y2Þ [35].
Single-particle spectra and defect-induced localized

states.—We diagonalize H0 on a periodic lattice L of
Lx × Ly sites to analyze the effect of defects on the band
structure [36]. Without defects, the lowest 2ϕLxLy single-
particle levels are exactly degenerate at zero energy. This
flatness is seriously distorted by M pairs of defects, and we
identify 4M levels with a significant deviation from the
original band structure: 2M of them (levels ϵ1;…; ϵ2M)
drop below the original lowest band, and another 2M
(ϵ2ϕLxLy−Mþ1;…ϵ2ϕLxLyþM) move into the original lowest
band gap. Moreover, they form nearly degenerate clusters,
respectively. An example of the band structure forM ¼ 1 is
shown in Fig. 2(a). We further examine the eigenvectors of
these 4M levels. Remarkably, they are all strongly localized
near the defects [Fig. 2(b)], and the localization becomes
weaker or completely disappears for other levels with less
deviation from the original band structure. This localization
enables us to do a controlled tuning of the deviated energies
by local potentials near the defects without significantly
distorting the rest of the band structure, as we explain below.
Higher genus flat bands.—The effectively increased

genus does not guarantee that defects in our model can
be thought of as genons. We must show that topological

phases can be stabilized on the high-genus surfaces created
by these defects, and that they display defect-enhanced
topological degeneracy. Tuning deviated single-particle
energies to recover a flat lowest band is necessary for
reaching this goal. We consider Nb ¼ ðk=2Þð2ϕLxLyÞ
bosons interacting via (kþ 1)-body on site repulsions

Hint ¼
X

i∈L;σ¼↑;↓

∶ni;σni;σ � � � ni;σ∶ ð2Þ

with integer k ≥ 1 [37]. In this setup, the ground state
without defects is two copies of model Zk Read-Rezayi
(RR) states on the lattice, residing in the lowest 2ϕLxLy

exactly degenerate eigenstates ofH0 with filling fraction ν ¼
Nb=ð2ϕLxLyÞ ¼ k=2 [38,39]. Adding M pairs of defects
effectively deforms the topology to a single g ¼ M þ 1
surface but should not change ν in the thermodynamic limit.

(a)

(b)

(c)

FIG. 2. Band structure for a Lx × Ly ¼ 12 × 12 lattice with
ϕ ¼ 1=2. (a) The spectrum fϵng ofH0. Without defects (M ¼ 0),
ϵ1;…; ϵ144 are exactly degenerate at zero energy. With one branch
cut [M ¼ 1, white dashed line in (b)] at ð5.5; 2.5 → 8.5Þ, the
original band structure is distorted, with two nearly degenerate
clusters ðϵ1; ϵ2Þ and ðϵ144; ϵ145Þ having the largest deviation.
(b) The lattice site weight of eigenvectors ψ1, ψ2, ψ144, ψ145 of
H0 for the same defects as in (a). All of them are strongly
localized near the defects. The eigenstates with less energy
deviation from the original band structure, for example, ψ3,
ψ4, ψ142, ψ143, are less localized (not shown here). (c) The
spectrum fϵRng of H0 þ V with R ¼ 0, 1, and 2 and the same
defects as in (a). ϵR1 ;…; ϵR145 which we must flatten (shaded in
gray) becomes more degenerate for larger R, with the flatness
ðϵR2ϕLxLyþMþ1 − ϵR2ϕLxLyþMÞ=ðϵR2ϕLxLyþM − ϵR1 Þ ≈ 0.6; 3.1; 9.4 for

R ¼ 0, 1, 2.
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Hence, in that case the most promising candidate for the
underlying topological phase is the Zk RR state on a single
g ¼ M þ 1 surface. In the continuum, such a state resides in
Ns exactly degenerate single-particle states in the lowest
Landau level, with

Ns ¼ 2Nb=k − ð1 − gÞ; ð3Þ

where ν¼ limNb→∞Nb=Ns¼k=2, and the extra offset 1 − g
is related to the topological “shift” [40,41]. Consequently, in
our lattice model with M pairs of defects, Eq. (3) combined
with Nb ¼ ðk=2Þð2ϕLxLyÞ and g ¼ M þ 1 requires a flat
band consisting of the lowest Ns ¼ 2ϕLxLy þM single-
particle eigenstates of H0 to host the Zk RR state. However,
this set of eigenstates corresponds to a residual flat band plus
all significantly deviated levels [Fig. 2(a)]. As the emergence
of FQH liquids requires a hierarchy of energy scales such
that interactions dominate the band dispersion of the low-
energy band, we must first flatten this large band dispersion
to amplify the interaction effect before a topological state can
be realized. Fortunately, this can be readily achieved by local
potentials owing to the strong localization of the deviated
states near defects [Fig. 2(b)]. A simple candidate of such a

local potential [29] is V ¼ −
P2ϕLxLyþM

n¼1 ϵnT RðjψnihψnjÞ,
where ϵn’s and ψn’s are the eigenvalues and eigenvectors of
H0, respectively, and T R denotes the truncation at a radius R
around each defect. The dominant terms in V exactly
correspond to the deviated levels, because others staying
at ϵn ¼ 0 have no contributions. As expected, a very small R
is already sufficient to do the flattening very well, with
negligible influence on the pertinent eigenvector subspace.
In Fig. 2(c), we show the band structure of H0 þ V with
M¼1 and R¼0, 1, 2, respectively. The degeneracy between
the lowest 2ϕLxLyþM energy levels indeed becomes better
with the increase of R, with the flatness significantly
increased to ≈9.4 for R ¼ 2. The corresponding eigenvec-
tors ofH0 þ V have a total 99% overlap with those ofH0 for
R ¼ 1 and R ¼ 2.
Defect-enhanced topological degeneracy.—After ensur-

ing that a new lowest flat band can be recovered, we are
now in the position to examine whether interactions can
stabilize the Zk RR states in the single high-genus surfaces
created by defects, characterized by the defect-enhanced
topological degeneracy D [42]. We project the interaction
Hint, which is assumed to be small relative to the band
gap, to the lowest 2ϕLxLy þM eigenstates of H0 [43] and
neglect their energy dispersion for large numerical effi-
ciency. This procedure is similar to the band projection in
the flat-band limit extensively used to study fractional
Chern insulators without defects [33].
In the most realistic k ¼ 1 case, we find compelling

evidence that defects lead to a ν ¼ 1=2 Laughlin state on
effective high-genus surfaces. Without defects, the ground
state is two copies of ν ¼ 1=2 Laughlin states on the torus
with D ¼ 2 × 2 ¼ 4. Although we still get D ¼ 4 with one

pair of defects, consistent with the ν ¼ 1=2 Laughlin state
on a single g ¼ 2 surface, a nontrivial enhancement of D
from 4 to 8 occurs for two pairs of defects (g ¼ 3),
characterized by eight approximately degenerate ground
states for various system sizes [Fig. 3(a)]. These states are
separated from other excited states by an energy gap which
is significantly larger than the ground-state splitting, and
the splitting is reduced relative to the gap as the system
size—and thus the separation of defects—is increased. The
eight ground states never mix with other excited states
under twisted boundary conditions [28] [Fig. 3(b)], which
confirms the robustness of topological degeneracy. In order
to further corroborate their topological nature, we compute
the particle entanglement spectra (PES) [33,44,45] to probe
the quasihole excitation property. We find a clear gap in the
PES, at the number of levels matching the corresponding
counting of quasihole excitations [Fig. 3(c)] [29,33]. Our
results unambiguously indicate that the ground state with
M pairs of defects is the ν ¼ 1=2 Laughlin state on a single
g ¼ M þ 1 surface with degeneracy Dk¼1

M ¼ 2Mþ1. While
the inclusion of a local potential V is crucial for obtaining
topological degeneracies, the specific choice thereof is less
crucial for larger systems stemming from their topological
origin [29].
The effect of defects is even more intriguing at higher k’s

with non-Abelian host states. For k ¼ 2, the ground state in
the absence of defects is two copies of Moore-Read (MR)
states on the torus, with D ¼ 9 for even Nb=2 and D ¼ 1
for oddNb=2. Strikingly, in this case, unlike the situation of

(a)

(b) (c)

FIG. 3. Defect-enhanced topological degeneracy for Abelian
systems at ν ¼ 1=2 with two branch cuts [35]. (a) The energy
spectra of various system sizes. The eight quasidegenerate ground
states are highlighted by the cyan shade. (b) The y-direction spectral
flow for Nb ¼ 6, Lx × Ly ¼ 4 × 3, ϕ ¼ 1=2. The eight ground
states (blueþ) never mix with excited states (gray ▵). (c) The PES
(blue) forNb ¼ 8,Lx × Ly ¼ 6 × 4,ϕ ¼ 1=3 in theNA

b ¼ 4 sector
and the corresponding quasihole excitations (red) for Nb ¼ 4,
Lx × Ly ¼ 6 × 4, ϕ ¼ 1=3. The number of states below the gaps
(indicated by the gray g) are identical in both spectra.
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k ¼ 1, one pair of defects already leads to a nontrivial
enhancement of D to 10 for all even Nb, which becomes
better for larger system sizes and is robust under twisted
boundary conditions [Figs. 4(a) and 4(c)]. By adding
another pair of defects, D is further enhanced to 36
[Figs. 4(b) and 4(d)], with a faster growth rate than the
k ¼ 1 case. The dependence of the topological degeneracy
on the number of defects convincingly suggests that, by
introducing M pairs of defects for k ¼ 2, the ground state
evolves to the ν ¼ 1 MR state on a single g ¼ M þ 1

surface with degeneracy Dk¼2
M ¼ 2Mð2Mþ1 þ 1Þ [46]. The

enhancement of the topological degeneracy is also
observed for k ¼ 3, where D is increased from 16 to 20
by addingM ¼ 1 pair of defects [Fig. 4(e)], consistent with
the ν ¼ 3=2 Z3 RR state on a single g ¼ M þ 1 surface
with degeneracy Dk¼3

M ¼ 2½ð5þ ffiffiffi
5

p ÞM þ ð5 − ffiffiffi
5

p ÞM� [46].
The topological phases with defect-enhanced ground-

state degeneracy strongly indicate that the defects in our
model are indeed genons. In particular, each of them
carries a distinct nontrivial quantum dimension d ¼
limM→∞ðDMÞ1=ð2MÞ from that of intrinsic quasiparticles
of the host state. At ν ¼ 1=2, we have non-Abelian genons
with d ¼ ffiffiffi

2
p

, although the Laughlin state only has Abelian
quasiparticles. More saliently, genons at ν ¼ 1 in our model
have d ¼ 2 thus allowing for universal quantum compu-
tation, while the quasiparticles of the MR state itself cannot
[12,24]. At ν ¼ 3=2, we obtain genons with even higher
quantum dimension d ¼ ð5þ ffiffiffi

5
p Þ1=2. These differences,

together with the projective braiding statistics of defects
[12], open the possibility that genons are more powerful
tools for topological quantum computation than ordinary
quasiparticles.

Discussion.—In this work, we condense the beautiful
idea of genons from topological field theory into a recipe
for realistic microscopic lattice models. We identify a
number of different lattice genons in both Abelian and
non-Abelian host states based on their numerically
observed defect-enhanced ground-state degeneracy, which
can be thought of as adding genons into the system. The
key ingredients of our proposal are already experimentally
available and their combined synthesis is plausibly within
reach—especially for coupled Laughlin states emerging
from a particularly simple on site two-body interaction.
Artificial gauge fields generated by lattice shaking tech-
niques are compatible with multiple internal degrees of
freedom as we require. The long-range hopping, which is
chosen for theoretical elegance and numerical efficiency,
is in fact not essential for the existence of lattice genons
[29]. Hence, the already realized Hofstadter model in
optical lattices [47,48] can serve as an eminently promising
candidate platform for creating genons, while its higher
Chern bands provide an additional variety of host quantum
Hall liquids [34,49]. In particular, a recent realization [50]
based on a quantum gas microscope already allows single-
site addressing, and could be combined with holographic
beam shaping methods [51] that provide a natural route
towards producing the branch cuts and local potentials
necessary to realize lattice genons as we envision.
Furthermore, a time-dependent control over the locations
of such branch cuts would enable braiding experiments that
may directly probe their exchange statistics.
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