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The Harper-Hofstadter model provides a fractal spectrum containing topological bands of any integer
Chern number C. We study the many-body physics that is realized by interacting particles occupying
Harper-Hofstadter bands with jCj > 1. We formulate the predictions of Chern-Simons or composite
fermion theory in terms of the filling factor ν, defined as the ratio of particle density to the number of single-
particle states per unit area. We show that this theory predicts a series of fractional quantum Hall states with
filling factors ν ¼ r=ðrjCj þ 1Þ for bosons, or ν ¼ r=ð2rjCj þ 1Þ for fermions. This series includes a
bosonic integer quantum Hall state in jCj ¼ 2 bands. We construct specific cases where a single band of
the Harper-Hofstadter model is occupied. For these cases, we provide numerical evidence that several states
in this series are realized as incompressible quantum liquids for bosons with contact interactions.
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Recently, there has been much progress towards exper-
imental realizations of topological flat bands, such as by
light-matter coupling in cold gases [1–7] or via spin-orbit
coupling in condensed matter systems [8–10]. These
systems provide novel avenues for exploring fractional
quantum Hall physics in new settings where lattice effects
play important roles [8–19]. Furthermore, these “fractional
Chern insulators” generalize the fractional quantum Hall
states of interacting particles in continuum Landau levels
to lattice-based systems.
In cases where the underlying topological band has

unit Chern number C ¼ 1 the states can be continuously
connected to conventional fractional quantum Hall states
in the continuum Landau level [20]. However, if the band
has Chern number C of magnitude greater than 1, no such
continuity is possible. The fractional quantum Hall states
have features that are particular to the lattice structure.
The appearance of fractional quantum Hall states for bands
with jCj > 1 has been demonstrated in various lattice
models, with unit cells that contain multiple states in the
form of distinct sublattices, or in terms of internal degrees
of freedom such as spin or color (see, e.g., Ref. [21]). In
particular, this has led to the proposal of states at filling
factors ν ¼ 1=ðjCj þ 1Þ for bosons [22–25].
In this Letter we show that this physics of interacting

particles in the novel Chern bands can be captured within
the Harper-Hofstadter model, in which a magnetic unit cell
arises naturally without additional internal degrees of
freedom. This model leads to a complex energy spectrum
as a function of flux nϕ ¼ Φ=Φ0 per plaquette. The low
energy bands can have Chern numbers larger than 1. We
show that they can realize the sequences of fractional Chern
insulator states for jCj > 1 discussed for other models,
providing an interpretation of these states in terms of the
composite fermion construction on a lattice [11,14]. Based
on these insights, we identify another sequence of fractional

Chern insulator states with filling factors ν ¼ r=ðrjCj þ 1Þ.
We show numerical evidence for this sequence from exact
diagonalization studies.
The Harper-Hofstadter model has recently been realized,

at least for weakly interacting particles, in experiments on
ultracold gases [2–4]. Further realizations have also been
obtained for a triangular moiré lattice in graphene flakes
deposited on boron nitride [26–28]. Our results demon-
strate that, under suitable conditions (particle density, flux
density, and temperature), these systems have the possibil-
ity to explore a wide range of the novel physics of fractional
Chern insulators.
The rich physics of charged particles in a two-dimensional

plane subjected to a perpendicular magnetic field B and a
periodic potential, or physically equivalent models emulating
this scenario, arises from its two competing length scales:
the magnetic length l0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
and the lattice scale a.

Hence, the problem brings to play the commensurability of
these two scales, as first analyzed by Harper [29]. The
resulting fractal structure of the single-particle spectrum
was revealed by Azbel [30] and the full spectrum solved
numerically and characterized by Hofstadter [31]. As shown
by Wannier [32], the Azbel-Hofstadter recursion relations
imply that the total number of states per unit area ns below
each gap varies linearly with the flux density nϕ, and further
that their relationship is described by the Diophantine
equation

ns ¼ Cnϕ −D; C;D ∈ Z: ð1Þ

The work by Streda [33], as well as Thouless et al. [34,35],
explains the physical relevance of Wannier’s result. For
noninteracting fermions, one expects incompressible states
at density n ¼ ns, with Hall conductivity given by Streda’s
formula as
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σxy ¼
e
Φ0

∂n
∂nϕ ¼ C

e2

h
: ð2Þ

Thouless et al. derive the Hall conductivity by direct
calculation from a Kubo formula, obtaining the integer
quantization from the topological nature of the resulting
expression, namely, that C ¼ P

Ci, where Ci is the Chern
number of the ith occupied band [34]. Thus, the integer C in
Eq. (1) is seen to be the net Chern number of the bands
contributing to the ns states below the energy gap. Solutions
to Eq. (1) exist for anyC inwhich ns arises from a single band
(see below), establishing the presence of bands of any Chern
number in the Hofstadter spectrum (albeit with rapidly
decreasing gaps for large C) [36,37].
To realize the nontrivial Chern bands of the Harper-

Hofstadter model, it is sufficient to create a tight-binding
lattice system with complex hopping elements between
nearest neighbor sites, a fact exploited for realizations of
the model in cold gases [2,3,6]. From the analysis of the
magnetic translation group [38,39], it follows that at a
rational flux density nϕ ¼ p=q, the Harper-Hofstadter
Hamiltonian admits a periodic representation on a magnetic
unit cell (MUC) comprising q sites, i.e., an area enclosing
an integer number of flux quanta and an integer number of
plaquettes of the lattice. The single-particle Hamiltonian
then takes the tight-binding form

Hsp ¼ −
X
i;j

tijeϕij â†j âi þ H:c:; ð3Þ

in which the phases ϕij are invariant under translations of
the MUC. (The choice of the MUC and the vector potential
Amake up the remaining space of gauge choices.) One can
therefore consider the q sites of the MUC as sublattices
α ¼ 1;…; q of a general q-site tight-binding model and
solve via Bloch’s theorem. Note that the origin of the MUC
can be chosen on any site of the lattice, so the problem
has an additional q-fold symmetry. We give an analysis of
the single-particle properties in the Supplemental Material
[40], taking care to respect this symmetry [41].
To search for strongly correlated phases, it is useful to

identify situations in which there is a manifold of low-
energy single-particle states (one band, or several closely
spaced bands) that is well separated from higher-energy
bands. For now, we focus on the case in which this
manifold is a single band, with a large gap to the next
band. The largest gap in the Harper-Hofstadter spectrum
corresponds to the lowest Landau level, with C ¼ 1,
D ¼ 0. Here, we seek more general states, and consider
the next-largest gaps found at the first level of the
Hofstadter hierarchy. These appear in the vicinity of cell
boundaries close to the simple rational flux densities
nϕ ¼ 1=Q, (Q > 1), where the energy bands become
exponentially flat in terms of both their energy dispersion
and their Berry curvature. Hence, these bands are well

suited to support incompressible fractional quantum Hall
states [13,14,53,54]. The gaps near points ðns; nϕÞ ¼
ð0; Q−1Þ are described by the Diophantine equation (1)
with C≡ sQ, and D ¼ sgnðCÞ ¼ s, with s ¼ �1 for the
bands at nϕ≷1=Q. We are particularly interested in cases
where we find a single band below this gap, i.e., where
nsðnϕ ¼ p=qÞ ¼ 1=q, and thus q ¼ Qp − s, with corre-
sponding flux densities

nϕ ¼ p
jCjp − sgnðCÞ ; p ∈ N: ð4Þ

Below, we take p > 2 to ensure that the band belongs to the
subcell nearest nϕ ¼ 1=jCj. We will also consider higher
band gaps at the same flux densities, which can be seen
as fractal replicas of the rth continuum Landau level, for
which

ns ¼ rðCnϕ − sgnCÞ; r ∈ Znf0g; ð5Þ

and where rC≷0 for the flux densities nϕ≷1=Q.
We now discuss the many-body physics of interacting

particles in the Harper-Hofstadter model, described by the
Hamiltonian

H ¼ Hsp þ
1

2

X
i;j

Vðri − rjÞ∶ n̂in̂j∶; ð6Þ

with site labels i, j, and ∶n̂∶ denoting normal ordering of
the density operators. Let us first review the predictions
of Chern-Simons theory [11], or, equivalently, the lattice
composite fermion picture [14], and translate these results
into the language used for the analysis of Chern insulators.
The basic premise of this approach is that the interaction
includes a sufficiently strong short-range repulsion in order
to favor “flux attachment,” which keeps the particles at a
distance from each other, thus minimizing interaction
energy. The composite fermion ansatz translates this idea
into a trial wave function of the form Ψtrialðr1;…; rNÞ ¼
PLEMΨJðfrigÞ ×ΨCFðfrigÞ, where both the Jastrow factor
ΨJ and the composite fermion wave function ΨCF vanish
when the positions of two particles coincide, and PLEM
denotes the projection onto the relevant low-energy mani-
fold of single-particle states. For the case of bosons
(fermions), one needs to attach an odd (even) number k
of flux quanta to the particles, so as to obtain an effective
problem of weakly interacting composite fermions (CF)
experiencing an effective flux density n�ϕ relating to the
externally applied flux via

nϕ ¼ knþ n�ϕ; k ∈ Znf0g: ð7Þ

If the CFs behave as weakly interacting particles, they will
form incompressible (topological) insulating states when
filling an integer number of bands. Their band structure is
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given by a Harper-Hofstadter Hamiltonian with flux
density n�ϕ. The densities n�s at which filled bands are
realized are therefore given by a Diophantine equation
of the form (1) for the composite fermion system,
n�s ¼ C�n�ϕ −D�, with integer parameters C�, D�. In
composite fermion theory, one can explain the fractional
QHE as an integer QHE of composite fermions [55], and
for the lattice case one thus predicts incompressible states at
n ¼ n�s . Hence, with Eq. (7), we find

n ¼ C�nϕ −D�

kC� þ 1
> 0: ð8Þ

Choices of the parameters C� and D� for the composite
fermion gap yield various candidates for incompressible
states in the spectrum, given in terms of density, as
illustrated previously as Fig. 1 in Ref. [14].
In order to relate the densities (8) to the “filling factor” of

FQH systems there are several choices that can be made.
One choice is to consider the ratio νϕ ≡ n=nϕ of particle
density to flux density, which is natural in the continuum
limit nϕ → 0, where the bands of the Harper-Hofstadter
model reduce to continuum Landau levels. More generally,
and to allow connections to fractional Chern insulator
models, the natural filling factor to consider is the ratio
ν≡ n=ns of the particle density to the number density of
single-particle states in the low-energy manifold (e.g., the
lowest energy band if this manifold is a single band). We
replace nϕ in Eq. (8) via Eq. (1) and obtain

n

�
1þ kC�

C�

�
þD�

C� ¼ ns
C

þD
C
: ð9Þ

In general, all parameters fk; C; C�; D;D�g contribute to
determine eligible states. However, as we now describe, for
some important cases the ratios D�=C� ¼ D=C are equal,
and the states can be characterized by a fixed filling
factor ν ¼ n=ns.
It is instructive to consider special cases. First, the

fractional quantum Hall states in a C ¼ 1 band are
recovered by choosing the manifold as the (lattice equiv-
alent of the) lowest Landau-level (C ¼ 1, D ¼ 0), and
taking general integers C� ¼ t, D� ¼ 0 for filling
composite fermion states in the tth Landau level. One
recovers the usual Jain series of states ν ¼ t=ðktþ 1Þ. (In
this case, ns ¼ nϕ, so the two definitions of filling factor
coincide.)
Second, we can take both the CF bands and the effective

low-energy bands in the same subcell of the Hofstadter
spectrum, close to the flux nϕ ¼ 1=jCj. As a concrete
example, consider the gaps (5) and choose to fill r bands of
composite fermions such that C� ¼ rC, andD� ¼ rsgnðCÞ,
and choose the lowest band with the given C, and
D ¼ sgnðCÞ for the manifold of single-particle states.
We obtain states with filling factors [56]

νC
�¼rC ¼ n

ns
¼ r

rjkCj þ 1
; r ∈ Znf0g; ð10Þ

where states with r < 0 represent the generalization of
negative flux attachment. In general, the low-energy
manifold supporting these states will have many bands,
but in the cases (4) this reduces to a single band.
The sequence of filling factors (10), valid for any Chern

number C ≠ 0, is a core result of our Letter [57].
Several remarks are in order. The case with r ¼ 1 can be

seen as an analogue of the Laughlin state, in the sense that a
single band of composite fermion states is filled. From the
previous studies of the Laughlin state on the lattice in a
C ¼ 1 band, we can infer useful intuition on the likely
stability of such states. The Laughlin state was shown to be
stable up to flux densities nϕ ≃ 0.4; i.e., it persists through
80% of the region in which a gap is open [60]. Likewise,
the ν ¼ 2=3 hierarchy state was seen to be stable up to
nϕ ≃ 0.3 [14]. In the case of the states stabilized in subcells
with jCj > 1 bands, we note that the bands tend to have
less dispersion, albeit maybe larger fluctuations in the
band geometry. By analogy, the family of states (10) can be
expected to be stable at a substantial distance from the
respective cell boundaries.
The reader will note that the prediction of composite

fermion theory (10) includes the Abelian states at filling
factors ν ¼ 1=ðjkCj þ 1Þ that have recently been described
in studies of Chern bands with Chern number jCj > 1
[22–24], for both bosons and fermions, and which were
described in terms of C flavor states [13,25,53,54]. The
derivation presented here demonstrates that these states are
predicted also by the concept of flux attachment [11]
leading to CF wave functions of the form described in
Ref. [14]. While the C-flavor or multilayer language
appears to require C copies of a C ¼ 1 Brillouin zone,
implying finite size geometries with a number of states
NsmodC ¼ 0, it was shown that a color-entangled formu-
lation remedies this constraint [25]. Note that the hierarchy
wave functions following from the CF construction [14]
similarly do not require any constraint on the lattice
geometry.
The composite fermion theory makes a more general

prediction, in that it does not require that the single particle
states making up the manifold ns are from a single band, as
nϕ can vary continuously in Eq. (9). Indeed, perturbing a
stable quantum liquid formed in a single-band configura-
tion by an infinitesimal change in nϕ, the low-energy
manifold splits up into (possibly infinitely) many bands,
but we expect that the physics of the phase should be robust
under this perturbation, providing a notion of adiabatic
continuity that allows us to connect any band to the limit
of the perfectly flat general Chern bands obtained as
nϕ → 1=C [40], in line with the behavior seen in C ¼ 1
Harper-Hofstadter bands [61].
The filling factors (10) are analogous to the hierarchy

states, which have been observed in Chern number one
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fractional Chern insulators [14,42,62]. Their properties, in
terms of quasiparticle charges and statistics were predicted
by Kol and Read [11], as summarized in Ref. [40]. Unlike
the lowest Landau level, jCj > 1 bands support states with
negative flux attachment (r < 0) even for jkj ¼ 1, r ¼ −1,
so the corresponding series of states leads to novel filling
factors. Numerical evidence for the ν ¼ 1 state in a
C ¼ 2 band obtained for Ckr ¼ −2 was provided by
the current authors in Ref. [14], which is a special case
in that it realizes an integer quantum Hall effect of
bosons [63].
The limit of filling many CF Landau levels, r → ∞,

which represents the equivalent of the half-filled Landau
level, converges to

lim
r→∞

νC
�¼rC ¼ 1

jkCj : ð11Þ

At these points, the composite fermion spectrum resembles
a Fermi sea, as the band gaps between the composite
fermion levels decrease as 1=r and evolve into a quasi-
continuum. In analogy to the half-filled continuum Landau
levels, one may ask whether this filling can be susceptible
to the equivalent of a CF pairing instability, or possibly
more exotic states. In the C ¼ 1 case, the possibility of a
Moore-Read state at ν ¼ 1 is well known [43]. For the
C ¼ 2 band near nϕ ¼ 1=2, a paired phase has been
described in a related continuum model [54,65], though
the model does not provide a quantitative description of
C ¼ 2 bands [44]. If realized, it is expected that a paired
phase at the fillings (11) would be non-Abelian in Chern
bands with jCj odd, while Majorana quasiparticles will
likely pair up for even Chern bands and thus recombine to
yield an Abelian phase [65].
A case that has not yet been explored is the Abelian

series of states (10). We examine the evidence for the
presence of these composite fermion or hierarchy states on
the basis of the band-projected Hamiltonian within the low-
energy manifold, focusing on the single-band cases (4).
The corresponding Hamiltonian, Hproj ¼ PLEMHPLEM,
can be studied in the same framework as other fractional
Chern insulator models [17]. The residual dispersion of
bands in the low-energy manifold could be of interest for
studying phase transitions between fractional quantum Hall
liquids and condensed phases of bosons or Fermi-liquidlike
states of fermions, respectively. However, here we
choose to neglect the residual band dispersion, particularly
as it vanishes quickly as nϕ → 1=jCj [40]. Furthermore,
we focus on the case of bosons with contact inter-
actions Vij ¼ Uδij.
Our numerical study shows evidence supporting the

existence of gapped quantum liquids at several filling
factors of the series (10). First, states are found for the
cases r ¼ 1, jkj ¼ 1, where the predictions of the filling
factor ν ¼ 1=ðjCj þ 1Þ coincide between the composite

fermion theory and the analyses in terms of Halperin
multicomponent [13,53,54] or color-entangled states
[25]. The integer bosonic quantum Hall state with
r ¼ −1 was discussed in Ref. [14]. Here, we present
evidence for additional states, such as those with jrj ¼ 2,
with two filled composite fermion bands. In Fig. 1, we
show their spectra for Chern bands with jCj ¼ 2 [panels (a)
and (b)], and C ¼ j3j [panels (c) and (d)]. All cases
show the correct ground state degeneracies predicted
by CF theory (dGS ¼ j1þ kC�j, see Refs. [11,40]). The
states with positive flux attachment, ν ¼ 2=5 (jCj ¼ 2) and
ν ¼ 2=7 (jCj ¼ 3) have the clearest signature in terms of
the magnitude of the gap to the average state spacing of
excitations. The states with negative flux attachment,
ν ¼ 2=3 (jCj ¼ 2) and ν ¼ 2=5 (jCj ¼ 3) also show a
distinct separation of energy scales.
A finite size scaling of the gap gives us further indi-

cations of the stability of these phases. Figure 2 shows the
gap scaling for several filling factors in the same jCj ¼ 2
and jCj ¼ 3 bands as above. All systems we examined
show the expected ground state degeneracy. In both bands,
the largest gap is found for the r ¼ 1 state of the series (10),
while the r ¼ �2 states have a slightly smaller gap in the
finite size systems. The extrapolation to the thermodynamic
limit is consistent with a nonzero gap for both the r ¼ 1 and
r ¼ �2 states for jCj ¼ 2. Data for the C ¼ 3 cases are
both noisier and include fewer system sizes. Nonetheless,
the results are consistent with a nonzero gap.

(a)

(c)

(b)

(d)

FIG. 1 (color online). Spectra for Chern insulators of the series
(10) in Harper-Hofstadter bands at flux densities from Eq. (4).
For Chern number jCj ¼ 2 we choose flux density nϕ ¼ 7=15,
showing (a) ν ¼ 2=5 for N ¼ 10 (b) ν ¼ 2=3 for N ¼ 12 bosons.
For C ¼ 3 we take nϕ ¼ 7=20, and show (c) ν ¼ 2=7 for N ¼ 8,
(d) ν ¼ 2=5 for N ¼ 10. For lattice geometries, see legend.
Multiplet structure of ground states shown in parentheses.
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In the Supplemental Material, we briefly discuss particle
entanglement spectra of our states, as well as spectral flow
under flux insertion [40]. In addition to these ground state
properties, we have examined spectra under addition of
“flux,” i.e., under changes of system size at fixed N. We
find low-lying bands of states consistent with an interpre-
tation as quasiparticle states of an underlying quantum Hall
liquid. We leave the detailed analysis of these features for a
future publication.
In conclusion, we have translated the composite-fermion

or Chern-Simons theory into the language of fractional
Chern insulators, leading to the prediction of a series of
states with filling factors ν ¼ r=ðrjkCj þ 1Þ, for bosons
(jkj ¼ 1) or fermions (jkj ¼ 2). This includes, and provides
an alternative description for, the series of states
ν ¼ 1=ðjkCj þ 1Þ that were observed in the literature on
FCI for jCj > 1. We have identified flux densities where a
single isolated band of Chern number C occurs at the
bottom of the Hofstadter spectrum. Finally, we have studied
the many-body states of bosons with contact interactions
under the projection into these Chern bands, identifying
gapped states with the ground state degeneracies predicted
by theory. While previous evidence had been given for the
bosonic integer Chern insulator state with ν ¼ 1, r ¼ −1,
jCj ¼ 2 [14], which was obtained for a hard-core inter-
action and without applying a band projection, the current
results provide evidence for the wider applicability of
composite fermion theory, and its validity also for the
band-projected Hamiltonian. Our results can be extended to
general jCj > 1 bands in other tight-binding models, and
to the effective continuum limit nϕ → 1=jCj via principles
of adiabatic continuity. Further investigations should focus
on the stability of fermionic states, the role of long-range
interactions and the detailed analysis of the ground states
and excitations in terms of the composite fermion trial wave
functions.
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