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We show how the phases of interacting particles in topological flat bands, known as fractional Chern

insulators, can be adiabatically connected to incompressible fractional quantum Hall liquids in the lowest

Landau level of an externally applied magnetic field. Unlike previous evidence suggesting the similarity of

these systems, our approach enables a formal proof of the equality of their topological orders, and

furthermore this proof robustly extends to the thermodynamic limit. We achieve this result using the

hybrid Wannier orbital basis proposed by Qi [Phys. Rev. Lett. 107, 126803 (2011)] in order to construct

interpolation Hamiltonians that provide continuous deformations between the two models. We illustrate

the validity of our approach for the ground state of bosons in the half filled Chern band of the Haldane

model, showing that it is adiabatically connected to the � ¼ 1=2 Laughlin state of bosons in the

continuum fractional quantum Hall problem.
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Owing to the recent discovery of topological insulators
[1], there is now hope to realize materials which manifest
Haldane’s vision of a quantum Hall effect without external
magnetic fields [2,3]. Several proposals have extended this
concept to fractional quantum Hall (FQH) liquids that
could be realized in topologically nontrivial bands which
are also flat [4–8]. A similar mechanism was proposed to
simulate the effect of strong magnetic fields in cold atomic
gases [9,10]. Flat bands with a nonzero Chern number
[11,12] provide an avenue to realize strongly correlated
states at high temperatures [4], raising prospects for stabi-
lizing exotic non-Abelian phases required to build topo-
logical quantum computers [13].

Numerical works seeking evidence for incompressible
quantum liquids in topological flat bands have focused on
spin polarized models breaking time-reversal symmetry
[14–16], which were baptized as fractional Chern insula-
tors (FCI) [16]. Signatures for the topological nature of
their ground states include their spectral flow and ground
state degeneracies [14,15] and the analysis of the entangle-
ment spectra. The latter reveal a counting of excitations
matching that of FQH states at the corresponding band
filling, e.g., the Laughlin and Moore-Read [16] or Jain
states [17]. One drawback is that these data can be acquired
only for finite size systems.

Current insights in the analytic theory of fractional Chern
insulators rely on the analysis of the projected density op-
erator algebra [18,19] or of emergent symmetries in the exact
many-body spectrum [20]. There are several proposals for
constructing FCIwave functions [21–27], and some overlaps
were calculated for fermionic systems [26]. However, the
understanding of the many-body ground states of FCIs

cannot yet pride itself with an achievement similar to the
celebrated accuracy of analytical wave functions for FQH
states [28–30].
In this Letter, we provide a formal proof that FCIs are

in the same universality class as FQH states. We base our
argument on Qi’s proposal [21] of a mapping between FQH
and FCI wave functions. By representing both FCI and FQH
Hamiltonians in a Hilbert space with the same structure, we
are able to study a class of superposition Hamiltonians that
extrapolate smoothly between these systems. Taking advan-
tage of this construction, we demonstrate that the many-
body ground states of bosons in a half filled lowest Landau
level and the topological flat band of the Haldane model are
adiabatically connected, proving formally that these phases
have the same type of topological order in the thermody-
namic limit. Our strategy can be employed generally to
identify incompressible quantum liquids in Chern bands,
including bands with Chern number jCj> 1.
Let us briefly comment on the case of lattice FQH states

[31–34], which are simultaneously FCIs in the Chern
bands of the Hofstadter butterfly [35] given that flux can
be gauged away. Nonetheless, these systems can be taken
to the limit of the continuum fractional quantumHall effect
(FQHE) [36]. Hofstadter bands can be realized in cold
atomic gases [37], which may also provide the most prom-
ising avenue for realizing FCIs since topological flat bands
require fine-tuned parameters that are efficiently controlled
in these systems [10,37–39].
We first establish our notation for the description of frac-

tional Chern insulators. We consider finite two-dimensional
lattices of Ncell ¼ L1 � L2 unit cells, spanned by lattice
vectors vi forming an opening angle �, and we choose
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v1 ¼ sinð�Þex þ cosð�Þey and v2 ¼ ey. Lattice sites are

located on nb sublattices � within the unit cell. In a finite
system with periodic boundary conditions �ðrþ LiviÞ ¼
ei�i�ðrÞ, the reciprocal lattice consists of discrete points

k ¼ P
iðqi þ �i

2�ÞGi, where G1 ¼ 2�ex=L1 sinð�Þ and

G2 ¼ 2�½� cotð�Þex þ ey�=L2 and we consider a rhom-

boid fundamental region with qi ¼ 0; . . . ; Li � 1.
For the moment, we consider the Hamiltonian of the

infinite system in its momentum space representationH ¼
P

kĉ
y
k;�h��ðkÞĉk;�, where hðkÞ yields a topologically non-

trivial flat band. Let the Bloch functions u and eigenenergies
� be determined by the corresponding eigenvalue equation
h��ðkÞun� ¼ �nðkÞun�, introducing the band index n, and

with the normalization
P

�jun�ðkÞj2 ¼ 1. In the following,

wewill denote the eigenstates as jn;ki¼P
�u

n
�ðkÞĉyk;�jvaci.

The ensuing Berry connection Aðn;kÞ¼�i
P

�u
n�
� ðkÞrk

un�ðkÞ is a gauge dependent quantity. Physical observables
such as the Berry curvature BðkÞ ¼ rk ^AðkÞ and the
resulting Chern index C ¼ 1

2�

R
BZ d

2kBðkÞ are gauge

invariant.
We now review Qi’s proposal for mapping FCIs onto

FQH states by a construction of Wannier states within a
topological flat band [21]. In his approach, we formulate
hybrid Wannier wave functions jWðx; kyÞi that are local-

ized only along the x axis, while retaining translational
invariance with a well-defined momentum projection ky
onto the y direction [40]. We can think of these states as the

simultaneous eigenstates of momentum P̂y and the band-

projected position operator X̂cg ¼ limqx!0
1
i

@
@qx

��qx
[18],

satisfying

X̂cgjWðx; kyÞi ¼ ½x� 	ðkyÞ=2��jWðx; kyÞi: (1)

We adopt the explicit construction of the Wannier states in
terms of the momentum eigenstates of hðkÞ presented in

Refs. [21,41], given by jWðx; kyÞi �
P

2�
kx¼0 f

x;ky
kx

jn ¼
0; ðkx; kyÞi, for x ¼ 0; . . . ; L1 � 1, with

f
x;ky
kx

¼ 
ðkyÞ
ffiffiffiffiffiffi
Lx

p e�i
R

kx
0
Axðpx;kyÞdpx�ikxfx�½	ðkyÞ=2��g: (2)

This expression is related to a simple Fourier transform of
the momentum eigenstates by additionally taking into
account parallel transport of the phase along kx according
to the Berry connection Ax. The polarization 	ðkyÞ ¼R
2�
0 Axðpx; kyÞdpx is required to ensure periodicity of the

state in kx, enforcing f
x;ky
kx

¼ f
x;ky
kxþ2�. The relative phases


ðkyÞ of the Wannier states represent a gauge freedom of

the theory, while the relative phase of Bloch functions at the
same ky is absorbed by the Berry connection in (2). We take

the particular choice 
ðkyÞ ¼ exp½�i
Rky
0 Ayð0; pyÞdpy þ

i
ky
2�

R
2�
0 Ayð0; pyÞdpy�, as suggested in Ref. [41].

In finite-size systems, we adapt the construction (2)
straightforwardly. Given the Bloch functions un�ðkÞ on

reciprocal lattice points in the fundamental region,we choose
a gauge that is consistent with the periodicity of momentum
space, i.e., un�ðkþ LiGiÞ ¼ un�ðkÞ. A discretized version

of the Berry connection of band n is then computed as
An
xðq1; q2Þ ¼ = log½un�� ðq1; q2Þun�ðq1 þ 1; q2Þ�. The inte-

gral of the Berry connection is discretized as
Rkx
0 Ax

ðpx; kyÞdpx !
Pq1ðkxÞ

~q1¼0 An
xð~q1; q2Þ, and mutatis mutandis for

An
yðq1; q2Þ. This resolution of (2) yields a unitary transfor-

mation of the original single particle basis. As angles, the
values of An

xðq1; q2Þ are defined modulo 2�, and we ensure
that the shift in x position �x ¼ 	ðkyÞ=2� satisfies 0 �
�x < 1. TheWannier states can thus be brought into an order

of increasing center of mass position hX̂cgi by using a single
linearizedmomentum index J [21] relating to the parameters
of the Wannier state by Ky ¼ ky þ 2�x � 2�J=L2, with

J ¼ 0; . . . ; Ncell � 1.
To describe the fractional quantum Hall problem of

particles in the lowest Landau level of a magnetic field,
we adopt the Landau gauge A ¼ �xBey, such that our

oblique simulation cell is pierced by N� ¼ Ncell flux

quanta, with L1v1 � L2v2 ¼ 2�‘20N�. The periodic

Landau-level orbitals �jðx; yÞ, j ¼ 0; . . . ; N� � 1 [42,43]

are chosen with definite momenta ky ¼ 2�j=L2, and

achieve their maximum amplitude at hxi ¼ ky‘
2
0.

For the remainder of this manuscript, we choose a specific
flat band model to perform a quantitative assessment of the
Wannier representation: we work with the Haldane model
[2], defined on the lattice shown in Fig. 1(a), and choose
parameters yielding a nearly flat C ¼ 1 band: t1 ¼ 1, t2 ¼
0:60, t3 ¼ �0:58, and � ¼ 0:4� [15]. The resulting Berry
curvature, shown in Fig. 1(b), is inhomogeneous. The defi-
nition (1) implies that

@

@ky
hX̂cgijx ¼ � 1

2�

@	ðkyÞ
@ky

¼
Z 2�

0
Bðpx; kyÞdpx; (3)

i.e., the ky dependency of the integrated Berry curvature

translates into a nonlinear evolution of the center of mass
position for the Wannier states, shown for the Haldane
model in Fig. 1(c). By contrast, the lowest Landau level
has a constant Berry curvature, yielding linear behavior.

FIG. 1 (color online). (a) Geometry and hopping terms in the
Haldane model: The fundamental unit cell has two inequivalent
sites A and B. Second nearest neighbor interactions are complex,
with arrows indicating the direction of a positive hopping
phase �rr0 . (b) Berry curvature for the Haldane model.
(c) Corresponding expectation value of the position operator
hX̂cgi for Wannier states according to Eq. (1).
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Having defined a single particle basis f�jg characterized
by a single linear (linearized) momentum index j (J) for
the lowest Landau level (FCI), respectively, we can
compare the structure of their interaction Hamiltonians
by evaluating matrix elements. Formally, two-body

interactions can be written in the generic form H ¼
P

fjigVj1j2j3j4 ĉ
y
j1
ĉyj2 ĉj3 ĉj4 , with matrix elements Vj1j2j3j4

given by the projection to the lowest band [16,42].
We focus on contact interactions for bosons, as this case

has a straightforward interpretation for the continuum and on
lattices. To treat the FCI case, we flatten the residual disper-
sion of the topological band (ensuring that theWannier states
are energy eigenstates). Upon comparison, we find that the
matrixelements for theFCIHamiltonian differ from theFQH
case in two aspects: The first issue concerns momentum
conservation. For the FQHE, the momentum of the Landau
gauge ky is conserved in scattering processes, and hence

VFQH
j1j2j3j4

/ �j1þj2;j3þj4 . In a topological flat band, momenta

q1 and q2 are conserved separately while the linearized
momentum index of the Wannier states J is conserved only

modulo L2, i.e., V
FCI
J1J2J3J4

/ �mod L2

J1þJ2;J3þJ4
. In Fig. 2(a), we

illustrate the magnitude of matrix elements for a small sys-
tem. The figure clearly shows the block-diagonal structure
for the FQH case, reflecting full momentum conservation,

while the FCI Hamiltonian has several off-block-diagonal
entries. Nevertheless, both matrices are similar in that the
entries of largestmagnitude are located at the same positions.
The second difference lies in the translational invariance of
the matrix elements. For the FQHE, the amplitude for scat-
tering processes is invariant under translations inmomentum
space (or effectively in real space, given that hxi / ky). For

the FCI on the other hand, the nonlinear dependency of

hX̂cgðKyÞi imprints a variation of the matrix elements with

periodicity L2. This effect is illustrated for several nearest
neighbor interactions in Figs. 2(b) and 2(c). Given these
two qualitative differences—momentum conservation and
translational invariance of the matrix elements—the FCI
Hamiltonian in the Wannier basis cannot have eigenstates
that are identical to those of the correspondingFQHproblem,
as had been conjectured in Ref. [21].
As a next step, we evaluate the similarity of the wave

functions for the FCI and FQH problems in terms of their
overlap when written in the Wannier and Landau-gauge
bases, respectively. We analyze the case of a half filled
band, or � ¼ 1=2, for systems with N ¼ 6, 8, and 10
bosons, on lattices of several aspect ratios. For the corre-
sponding FQH problem, we choose a simulation cell with
the same geometric features, namely, a torus with an aspect
ratio given by R ¼ L2=L1 and opening angle � ¼ �=3 to
match the hexagonal lattice underlying the Haldane model.
The FCI Hamiltonian in the Wannier basis is diagonalized
in the Fock spaces for total linearized momenta Jtot ¼
½ðPN

n¼1 JnÞmodL2�. The Hilbert space for the FQHE has

full translational symmetry and segments into blocks with
total momentum jTtot ¼ 0; . . . ; N� � 1, (where N�¼Ncell).

Accordingly, each FCI eigenstate in sector Jtot can have
overlap with several sectors jTtot of the FQH problem
satisfying ½jTtotmodL2� ¼ Jtot. In addition, the Laughlin
state [28], which is the exact ground state of contact
interactions in the lowest Landau level at filling � ¼ 1=2,
has a twofold topological degeneracy dGS ¼ 2. Hence, we
calculate the total ground state overlapO as an average for
both ground states j�FCI

s i, taking into account projections
P jT onto sectors with torus ground states j�T

s0 i, yielding
O¼ 1

dGS

PdGS
s;s0¼1

jh�T
s0 jP jT ðs0Þj�FCI

s ij2. For our largest system,

N¼10 particles on a L1 � L2 ¼ 5� 4 lattice with a
Hilbert space of d ’ 5� 106, we find a clear gap above
two low lying ground states that yield a total overlap of
O ¼ 0:822. This value corresponds to Qi’s gauge choice of
the Wannier states [41]. In addition, we have run numerical
optimizations of the phases 
ðkyÞmaximizingO, and have

found minor changes & 1% in the overall result. Thus, we
report overlaps conforming with the initial gauge choice
[44]. The FCI states have a total weightW ¼ 0:885within
the momentum sectors of torus ground states, establishing
an upper bound for the overlap. The ‘‘leakage’’ of weight
outside the ground state sectors results from off-block
diagonal entries in the FCI Hamiltonian, and is indepen-
dent of the gauge choice.

FIG. 2 (color online). (a) Magnitudes of matrix elements for
the two-body delta interaction between particle pairs of incom-

ing (outgoing) momenta JiðfÞ12 ¼ ½ðJ1 þ J2ÞmodNcell� in a finite

size geometry for the FQHE on the torus withN� ¼ 12 (left) and

for the FCI in the lowest band of the Haldane model for a 3� 4
lattice (right). (b) Schematic showing some short range inter-
actions, including a ‘‘squeezing’’ process V11 as well as two
diagonal interaction terms V20, V00. Panel (c) shows how the
magnitude of these processes depends on the center of mass
position for the FCI (solid) as compared to FQH (dashed).
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For the Haldane model, we conclude that the Wannier
construction yields nontrivial overlaps with the eigenstates
on the torus. However, in light of our results, Qi’s
construction does not yield satisfactorily accurate trial
wave functions. Nevertheless, the Wannier construction
allows us to formulate the FCI and FQH problems in a
Hilbert space of the same structure, making it convenient
not only to calculate overlaps but also to construct an adia-
batic continuation between them. Hence, we can formulate a
superposition of both Hamiltonians and analyze its spectrum
at any intermediate value of an interpolation parameter �:

H ð�Þ¼�P TFB½H FCIðUÞ�þð1��ÞH FQHðV0¼1Þ; (4)

where P TFB denotes the flattening of the topological flat
band. In order to fix the relative energy scales in the two
problems, we analyze the magnitude of the gap and choose a
value of the onsite interactionsU that equalizes its numerical
value for � ¼ 0 and � ¼ 1, respectively. As we find little
scaling of the gap with the system size (see below), we
choose a single value of U ¼ 0:2649 throughout our study.
With the definition (4) of the adiabatic continuation, we can
analyze the overlap and leakage of the ground state wave
functions as a function of �. Figure 3(a) summarizes our
results for several system sizes, showing how the overlap
drops with increasing system size.

We now examinewhether the Laughlin state on the torus is
adiabatically connected to the ground state of the Haldane
modelwith delta interactions. The properties of topologically
ordered phases are conserved under the variation of system
parameters as long as the ground state manifold is protected
by a finite gap �. Hence, we evaluate the spectrum of the
class of Hamiltonians (4) as a function of �, as displayed in
Fig. 3(c) forN ¼ 10 particles. The spectrum clearly shows a
twofold degenerate ground state, which is well separated by
a gap from a continuum of excited states at higher energy.
To survey finite size scaling, we report � for different

lattice geometries in Fig. 3(d). The magnitude of � is found
to be weakly dependent on the interpolation parameter �.
Furthermore, it also depends weakly on system size.
The inset shows the finite size scaling of � for different
adiabatic continuation parameters, clearly revealing that
the gap remains open in the thermodynamic limit. Hence,
we confirm that the bosonic Laughlin state at � ¼ 1=2 is
adiabatically connected to the ground state of the Haldane
model, which firmly establishes that they are in the same
universality class. We underline that finding a path of adia-
batic continuity is a nontrivial task. In our formulation, the
choice of the Wannier basis yields the definition for a
successful path of deformation.
Finally, given its importance for identifying incompress-

ible states in FCI models [16,45], we consider the entangle-
ment spectrum of the ground states along the trajectory
0 � � � 1. We evaluate the particle entanglement spectrum
that encodes the number of quasihole excitations above the
ground state [46,47]. As shown in Fig. 4(a), we find a clear
entanglement gap �
, and that the count of entanglement

eigenstates below the gap remains conserved at the expected
universal number [16] within all momentum sectors and at
all values of �. The magnitude of �
 increases monotoni-

cally as the system is deformed from the FCI (� ¼ 1)
toward the FQHE limit (� ¼ 0), as shown for different
system sizes in Fig. 4(b). A quantitative extrapolation of
�
 to the thermodynamic limit is not justified on our limited

data base, but it appears likely that the monotonic behavior
of �
 carries over to the thermodynamic limit. Hence, our

data are consistent with an extended adiabatic continuity in
terms of the entanglement gap.
In conclusion, we have established an approach to show

that fractional Chern insulators are adiabatically connected
to fractional quantum Hall states. Our technique uses Qi’s
construction of hybrid Wannier orbitals, and extends to the
thermodynamic limit by a robust extrapolation procedure.
Specifically, we have used this concept to prove that the
FCI ground state of bosons in the half filled Chern band of
the Haldane model is in the same universality class as the
Laughlin wave function at � ¼ 1=2.
We thank N.R. Cooper, R. Roy, B. Béri, Y.-L. Wu, G.

Conduit, and especially N. Regnault for insightful discus-
sions. T. S. enjoyed the hospitality of Trinity Hall Cambridge

FIG. 3 (color online). (a) Overlap of the ground state mani-
folds of H ð�Þ and H FQH (see text) for bosons at � ¼ 1=2.
(b) Total weight in torus ground state subspace. (c) Spectrum for
a system with N ¼ 10 particles, along a path adiabatically
connecting a continuum problem on the torus to the FCI
Haldane model on a lattice of 4� 5 unit cells. The insets
show the momentum-resolved spectrum for the torus (left) and
the pure FCI system (right). (d) Gap for several systems of
different sizes and aspect ratios. Inset: Finite size scaling of
the gap.

FIG. 4 (color online). Entanglement spectrum (a) and entan-
glement gap (b) for the reduced density matrix of a block with
NA ¼ N=2 particles. System sizes in analogy with the energy
spectrum shown in Figs. 3(c) and 3(d).
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Note added in proof.—Shortly after publishing the first
preprint of this manuscript [48], a preprint on a similar
topic has appeared [49].
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Mod. Phys. 83, 1523 (2011).
[38] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M.A.

Martin-Delgado, M. Lewenstein, and I. B. Spielman, Phys.

Rev. Lett. 105, 255302 (2010).
[39] D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Phys.
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