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We present evidence supporting the weakly paired Moore-Read phase in the half-filled second Landau

level, focusing on some of the qualitative features of its excitations. Based on numerical studies, we show

that systems with odd particle number at the flux N� ¼ 2N � 3 can be interpreted as a neutral fermion

mode of one unpaired fermion, which is gapped. The mode is found to have two distinct minima,

providing a signature that could be observed by photoluminescence. In the presence of two quasiparticles

the same neutral fermion excitation is shown to be gapless, confirming expectations for non-Abelian

statistics of the Ising model with degenerate fusion channels 1 and c .
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Previous studies of the � ¼ 5=2 quantum Hall effect [1]
have accumulated mounting evidence in favor of the Moore-
Read state [2–4] of weakly paired composite fermions (CFs)
[5]. Because of its potential application in topological quan-
tum computation [6], scrutinizing the physical realization of
this phase at � ¼ 5=2 is a great challenge of fundamental
and technological importance [6–8]. Theoretically, the main
evidence comes from adiabatic connection [9,10] and sig-
nificant overlaps of the exact ground state in finite model
systems with theMoore-Read (MR) state [4] or more general
weakly paired wave functions [9]. The key expectation is
that, by extension, the quasiparticles of this gapped topologi-
cal phase are described by the same underlying (Ising)
conformal field theory and obey non-Abelian statistics.

In this Letter, we provide an approach that tests the
qualitative properties of the � ¼ 5=2 quasiparticles di-
rectly, using numerical analysis in the spherical geometry
[11]. Our results support the predictions of Moore and
Read [2], without reference to any trial wave function.
First, as a consequence of the pairing, it is expected that
odd-numbered configurations should be disfavored [3]. We
investigate this effect for a selection of simple two-body
Hamiltonians such as the Coulomb interaction in the sec-
ond Landau level (LL). (We focus on qualitative features,
and exclude detailed modeling of effects such as finite
width [12] or LL mixing [13,14], and assume full spin
polarization [15–17].) We show that systems with odd
particle number at the flux of the MR ground state possess
a dispersing band of low-lying excitations which we inter-
pret as a neutral fermion (NF) mode arising from an un-
paired electron. This NF mode has an energy gap �NF of
the order of the charge gap �c [18]. Second, we study the
energetics of a NF in the presence of charged quasiparticles
(QPs): positive quasiholes (QHs) or negative quasielec-
trons (QEs). In this case, our thermodynamic extrapola-
tions of the energy are consistent with a gapless NF. This
confirms one of the core features of the non-Abelian sta-
tistics of the MR state: the topological degeneracy of two

possible fusion channels 1 and c of a pair of two distant
QPs, corresponding to the absence or presence of an addi-
tional fermion. Furthermore, we determine the NF disper-
sion and propose an experiment to probe this dispersion
directly. We also give evidence that the QHs and QEs of the
� ¼ 5=2 state (for microscopic two-body Hamiltonians)
fuse in the c channel.
For our studies, we perform exact diagonalizations of

model Hamiltonians for N � 20 spin-polarized, quasi
two-dimensional (2D) electrons on a sphere of radius R
pierced by N� ¼ 2N � � magnetic flux quanta. The MR

Pfaffian state is at the shift of � ¼ 3. We consider three
model Hamiltonians: First, the Coulomb interaction H C

in the second LL, as defined by the pseudopotential coef-
ficients either for a 2D layer of effective width w ¼ 0 or
w ¼ 3� (� being the magnetic length). Second, a modified
Coulomb interaction H 1, with the short-range pseudo-
potential V1 (for pairs with relative angular momentum
m ¼ 1) increased by �V1 ¼ 0:04e2=�. This increase in V1

is known to yield maximum overlap with the MR Pfaffian
[9,19], and was found to mimic LL mixing [20] in the
perturbative analysis of Bishara-Nayak [14,21]. Third, and
finally, the ‘‘Pfaffian (Pf) model’’ given by the projector on
triplets with the minimal allowed relative angular momen-

tum (m ¼ 3),H Pf ¼ P
i;j;kP

ð3Þ
ijk. Although we focus on the

Pfaffian state, the particle-hole symmetry of the two-body
interactionsH C,H 1 makes our conclusions equally valid
for its conjugate, the ‘‘anti-Pfaffian.’’
We now analyze the excitation spectra of these

Hamiltonians. A typical set of raw data is shown in
Fig. 1 for N ¼ 15 particles. Here we first focus on
Figs. 1(d)–1(f), in which we confirm the existence of a
dispersive mode associated with a single fermionic QP
for finite systems with an odd N [3]. All these three
spectra feature a ground state at nonzero angular momen-
tum within a low-lying band of collective excitations.
Empirically, we find that this well-separated band extends
up to the angular momentum L ¼ N=2, as seen most
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clearly for H Pf . The minima of the dispersion are far
below the continuum. Eigenstates within the band are
spaced by �L ¼ 1, as expected for a single mobile NF in
the background of an underlying quantum liquid.

In Fig. 2 we collected data from energy spectra for
different N � 19 to estimate the NF dispersion, which is
compared to the magnetoroton mode in Fig. 2(c). To
reduce finite-size effects, for each N we used polynomial
interpolation of our data to locate the wave vector k0 and

the energy E0 corresponding to the minimum of the dis-
persion. We find that k0ðNÞ is essentially constant, and the
minimum E0 is well described by E0ðNÞ ’ �NF þ �=N,
converging to a finite NF gap�NF measured with respect to
the MR ground state energy [22]. Subtracting the finite-
size scaling, our data reduce to one well-defined curve
(most accurately for H Pf).
The shape of the NF mode varies significantly between

our model Hamiltonians. A general feature emerging for
all spectra is a NF dispersion with two minima [these are
best seen in panel (c)]: a deeper ‘‘NF1’’ near k0� ’ 1 and a
more shallow ‘‘NF2’’ near k� ’ 2. The dispersion of H C

shows strong finite-size effects, which we interpret as a
consequence of the proximity to a phase transition into a
charge-density wave phase [19]. Indeed, H 1 which is
known to yield a state well inside the weakly paired phase
also produces cleanly defined dispersions, particularly
for the NF. (The magnetoroton dispersion for H C or
H 1—not shown—has stronger finite-size effects than
the NF, as it involves two interacting QPs instead of
one.) Comparing different panels, it is remarkable that as
soon as the two minima of the NF dispersion actually form
(which for H 1 seems to require �V1 * 0:02e2=�), they
remain located at virtually unchanged wave vectors,
while the bandwidth depends significantly on the particular
model (e.g., on �V1). TheNF1 lies slightly below the Fermi
surface of CFs, i.e., k0 ’ kF (for a half-filled LL of spinless
fermions, kF ¼ 1=�). This confirms the expectation of
Bogoliubov theory, that in a weakly paired phase of CFs,
and for weak coupling, the minimum is close to kF [4]. The
presence of the second minimum NF2 is more surprising.
It could arise as a superposition of a NF with additional
magnetoroton excitations. However, the combined energy
for a NF and magnetoroton is found to be larger than NF2.
Tentatively, this feature could be related to a bound state of
these objects. In any case, we conclude that NF2 cannot
decay into a NF and a magnetoroton, so it is a genuine
feature of the NF dispersion describing a long-lived exci-
tation, and can be tested in experiment.
Direct observation of the NF requires a probe changing

the fermion number of the second LL. One such probe is
photoluminescence (PL), in which an electron in this LL
recombines with a photoexcited valence band hole (the
‘‘1,0’’ or ‘‘1,1’’ PL lines in Ref. [23]). The PL spectrum
depends on the nature of the state into which the hole
relaxes prior to recombination. Often for fractional quan-
tum Hall systems, this is an ‘‘excitonic’’ state in which the
hole binds a charge e to form a neutral exciton moving in
the background incompressible liquid [24]. Interestingly,
for the � ¼ 5=2 state there are two distinct excitonic states
[25] with different parity of the electron number Ne [26].
Which of these two states has the lower energy is difficult
to predict: this amounts to determining the fusion channel
of four QEs in the presence of the hole. However, if such
fusion can be viewed as pairwise, then the two pairs will
fuse either both to 1 or both to c , giving an overall even
Ne. PL recombination removes one electron, so it leaves a
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FIG. 1 (color online). Energy spectra (bare interaction energy
E versus angular momentum L) of N ¼ 15 electrons in a half-
filled second LL, interpreted in terms of the neutral fermion
(NF) excitation in the Pfaffian (Pf) ground state. Different values
of the magnetic flux are N� ¼ 26 (top), 27 (center), and 28

(bottom), corresponding to the NF with additional pair of
charged quasielectrons (QEs), NF alone, and NF with additional
pair of charged quasiholes (QHs), respectively. Different inter-
actions are H C ¼ pure Coulomb (left), H 1 ¼ Coulomb with
an additional enhancement of the m ¼ 1 pair pseudopotential
(center), and H Pf ¼ three-body Pfaffian Hamiltonian with the
only triplet pseudopotential at m ¼ 3 (right). Labels indicate
squared overlaps jhH C=1jH Pfij2 for the low-lying bands.
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FIG. 2 (color online). Dispersions (energy E versus wave
vector k) of the neutral fermion (NF) collective modes of the
half-filled second LL, estimated from the systems of N � 19
electrons at the magnetic flux N� ¼ 2N � 3, for the different

Hamiltonians of Fig. 1. Gray dashed lines in (b) show the
evolution of �NF with �V1. For comparison, (c) also shows the
magnetoroton mode for H Pf .
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final state with opposite parity to the initial state. For an
odd initial Ne, recombination can occur to the MR ground
state, yielding a sharp PL line (symmetrically broadened
by disorder). For even initial Ne, recombination leaves an
odd final Ne, and so must involve the creation of a NF.
Since the excitonic state is typically easily localized by
disorder [24], the resulting PL spectrum will probe the
density of states of the NF band. The minima in the NF
band will appear as two asymmetrically broadened peaks
[27]. The observation of this double-peak structure in PL
would allow direct measurements of the energies of the
minima of the NF band.

The evolution of the dispersion minimum NF1 as a func-
tion of �V1, sketched as gray lines in Fig. 2(b), gives some
insight into the nature of phase transitions. At small �V1,
the NF gap �NF remains nonzero, so we expect the pairing
nature of the phase to survive up to the transition into a
charge-density wave [19]. The collective NFmode flattens at
small �V1; however, the spectrum is dominated by finite-size
effects below V1 � 0:02. At large �V1 (approaching inter-
actions resembling the lowest LL) a smooth decay of �NF

indicates a continuous weakening of pairing (see also [9]).
The minimum becomes steeper, and the gap collapses near
k � kF ¼ 1=�, consistent with a crossover into the CF
Fermi liquid state.

We now turn to investigate the physics of a neutral fermion
in the presence of two QEs or QHs. For a pair of QHs in the
MR state (even N), H Pf features a band of zero-energy
states spaced by �L ¼ 2 and terminating at L ¼ N=2 [28].
We find that when a neutral fermion is added to the system,
low-lying states are found at the same angular momenta [see
Figs. 1(g)–1(i)]. Empirically, we find that quasielectron states
behave similarly. First, we identify a band of low-lying states
for H Pf at even N, again with �L ¼ 2 but terminating at
L ¼ N=2� 2. For 2QEþ NF configurations, a band with
the same angular momenta is obtained by removing one
particle and two flux from the system, so the lowest energy
NF states can be thought of as holelike. Figures 1(a)–1(c)
show example 2QEþ NF spectra.

In the presence of QPs the low-lying excitations are not
as well separated in the spectrum as for the NF alone, and
more significant finite-size effects are expected. Thus, we
proceed carefully in analyzing the energetics. The presence
of the NF can affect the angular momentum, relative
positions, and shape of the QPs, changing their interaction
energy in an unknown way. Since we are unable to subtract
these effects systematically, instead we average the energy
over all states in the low-energy band associated with the
two QP (þ NF) excitations. Thus, we evaluate the (prop-
erly normalized) average hE�i �

P
Lð2Lþ 1ÞE�ðLÞ. The

energy of each eigenstate E�ðLÞ is measured with respect
to the ground state energy [22] (where � indicates a set of
QP numbers, � ¼ 2QE, 2QH, 2QEþ NF, and 2QHþ
NF). For Coulomb Hamiltonians, we apply standard cor-
rections to the energies E�ðLÞ, including using rescaled
magnetic length, applying an electrostatic charging
correction of the energies, and correcting for the

Coulomb interactions of QPs �VQP in the excited configu-

rations [29–31].
The values hE�i obtained after applying the charging

corrections are shown in Figs. 3(a)–3(c) and reflect the
total energy of a system with two QEs or QHs, with or
without an additional NF [31]. Importantly, for odd N it
contains the energy cost for adding a NF in the presence of
a pair of QEs (��

NF) or QHs (�þ
NF), that includes the

interaction of the NF with these QPs. Since we average
over all positions of the QPs, in finite-size systems one
expects a nonzero splitting��

NF between the c and 1 chan-
nels from configurations with overlapping QPs. Estimates
from trial states of QHs at close separation [32] suggest
that for Coulomb interactions the splitting is ’ 0:01e2=� �
�max. When averaged over all possible QP positions, the
contribution would be significantly smaller, due in part to
its oscillatory behavior. For finite systems, we find the
(average) splitting of fusion channels, including its finite-
size effects, satisfies ��

NF & �max. [For H Pf in Fig. 3(c),
the splitting �þ

NF vanishes by construction [28]. ]
If the QPs are non-Abelian Ising anyons, as in the

Moore-Read phase, then the energy splitting ��
NF should

scale to zero in the thermodynamic limit. The extrapola-
tions in Figs. 3(a)–3(c) are consistent with the vanishing
of both splittings ��

NF (in each case, the extrapolated value
is considerably smaller than its standard deviation).
Although we cannot prove that the splittings vanish ex-
actly, we emphasize that their best estimates are at least an
order of magnitude smaller than the charge gap �c or �NF.
It is highly nontrivial to find a near degeneracy on this
scale. We have examined the behavior as a function of �V1

in our model Hamiltonian H 1. We find that the splitting
remains similarly small over the same range of interactions
for which the L ¼ 0 ground state has a large gap and a
high overlap with the Moore-Read Pfaffian [9,10], i.e.,
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FIG. 3 (color online). Comparison of the total energies of a
pair of QEs or QHs, with and without an additional NF (see text
for the precise definition), for systems of different size N and for
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extending upwards in �V1 from about H C towards the
point of collapse of the NF gap. We take these results as
evidence that, over this range of �V1, the QEs and the QHs
in these realistic systems have non-Abelian exchange sta-
tistics of the form of the Moore-Read phase.

To investigate which fusion channel is preferred at short
distance, we have estimated the splitting ��

NF for QPs at
near-coincident points. In Figs. 3(d)–3(f), we show
Eprox ¼ E�ðLmaxÞ using the low-lying 2QP=2QPþ NF

states with the largest angular momentum (and closest
separation of the QPs) [33]. In this case the odd-even
splitting opens for each of the considered Hamiltonians.
The splitting also remains in the thermodynamic limit,
revealing a slightly negative ��

NF, signaling a preference
for the c channel [e.g., �þ

NF ¼ �0:0053ð41Þe2=� and
��

NF ¼ �0:0023ð23Þe2=� for H 1, and �þ
NF ¼ �0:15ð3Þ

for H Pf]. Previously, the splitting had been known only
for QHs, and was based on variational wave functions [32].
Here, we report the splittings for both QE and QH based on
exact calculations in finite systems.

In conclusion, we have analyzed the neutral fermion
excitations of the � ¼ 5=2 state for microscopic two-body
Hamiltonians. We showed that these exhibit similar prop-
erties to those of the Pfaffian model, for which the Moore-
Read phase is the exact ground state. The neutral fermion is
gapped in the ground state, but is gapless in the presence of a
pair of quasiparticles. These results provide important evi-
dence that the� ¼ 5=2 state has the properties of theweakly
paired Moore-Read phase. Our studies also elucidate addi-
tional physical properties of this phase: we predict that
characteristic features of the NF dispersion can appear in
photoluminescence experiments; and we show evidence for
the nature of the fusion of two QEs or QHs.
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