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G. Möller1 and N. R. Cooper1,2

1Theory of Condensed Matter Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
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We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the

physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions

(CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We

construct trial states for these phases and test numerically the predictions of the CF model. We establish

the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a

wider scope of the composite fermion approach beyond its application to the lowest Landau level.
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Ultracold atomic gases have become a very active field
of study of strongly correlated quantum systems. While
dilute Bose gases are typically in a weakly interacting
regime, they can be driven into regimes of strong correla-
tions. The application of an optical lattice potential leads to
a suppression of the kinetic energy relative to the inter-
action energy and has allowed the experimental explora-
tion of the quantum phase transition between Mott insula-
tor and superfluid [1]. Rapid rotation of the atomic gas also
leads to a quenching of the kinetic energy into degenerate
Landau levels [2], and a regime of strong interactions [3].
At a low filling factor � (defined as the ratio of the number
of particles to the number of vortices), this is predicted to
lead to strongly correlated phases [4] which can be viewed
as bosonic versions of fractional quantum Hall effect
(FQHE) states [5]. In order to access the low filling factor
regime in experiment, it may be favorable to exploit the
strong interactions that are available in optical lattice sys-
tems [6,7] for which methods exist to simulate uniform
rotation, or equivalently, a uniform magnetic field [8–10],
and achieve high vortex density. This raises the interesting
question: what are the correlated phases of atomic gases
that are subjected both to a lattice and to an effective
magnetic field?

In this Letter, we study the interplay between the FQHE
of bosons and the strong correlation imposed by a lattice
potential. At sufficiently low particle density, the effect of
the lattice has been shown to have negligible impact on the
nature of the continuum Laughlin state at � ¼ 1

2 [7,10]. We

focus on the possibility that there exist strongly correlated
phases which have no counterpart in the continuum, but
that appear as a direct consequence of both the lattice
potential and a (simulated) magnetic field. To do so, we
adapt the composite fermion (CF) theory [11,12], which
has been shown to accurately describe atomic Bose gases
in the continuum [13,14], and apply this theory to bosons
on a lattice. Within mean-field theory, the lattice leads to
the intricate Hofstadter spectrum for the composite fermi-
ons [15,16]. We predict a series of incompressible phases
of bosons on a lattice, characterized by special relations of

the flux density n� and particle density n, and we construct

trial wave functions describing these phases. From exten-
sive exact diagonalization studies, we establish the accu-
racy of the composite fermion approach, notably for states
for which n ¼ 1

2 � 1
2n�; these correspond to incompress-

ible quantum Hall states which have no counterpart in the
continuum. To our knowledge, there has been no previous
evidence for new FQHE states induced by a lattice poten-
tial. A previous proposal for quantum Hall states of bosons
on the lattice [17] takes a different viewpoint, but remains
untested.
We study a model of bosonic atoms on a two-

dimensional square lattice and subjected to a uniform
effective magnetic field, using the Bose-Hubbard model
with Hamiltonian [8–10,18]

H ¼ �J
X

hi;ji
½âyi âjeiAij þ H:c:� þU

2

X

i

n̂iðn̂i � 1Þ; (1)

with âðyÞi bosonic field operators on site i, and n̂i � âyi âi.
We consider a uniform system with fixed average particle
density n (per lattice site). The strength of the mag-
netic field is set by the flux density n� (per plaquette),

defined by the condition that
P

hAij ¼ 2�n�. Here, n� ¼
ma2�=ð�@Þ if this vector potential is due to rotation of the
system with lattice constant a and boson mass m at the
angular frequency �. Simulating the field by imprinting
phases [8–10] directly defines 2�n�; such methods are

likely to allow fields with n� � 1. Owing to the periodicity

under n� ! n� þ 1, we choose 0 � n� < 1.

The single-particle spectrum follows from the solution
of Harper’s equation, and takes an intricate form, known as
the Hofstadter butterfly [19]. It has a fractal structure
consisting of q bands at rational flux density n� ¼ p=q.

Signatures of this structure appear in the mean-field treat-
ment of the Bose-Hubbard model [20,21]. We wish to
determine the ground states (GS) of bosons beyond the
mean-field regime, where interparticle repulsion leads to
strongly correlated phases. We focus on the hard-core limit
U � J, where the bosonic Hilbert space is reduced to
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single occupations of lattice sites 0 � ni � 1. In this limit,
the Hamiltonian (1) can be viewed as a spin-1=2 quantum
magnet. The gauge fields introduce frustration, putting this
in the class of frustrated quantum spin models where
unconventional spin-liquid phases can appear. Indeed, the
Laughlin � ¼ 1

2 state studied in Ref. [10] is in the

Kalmeyer-Laughlin [22] spin-liquid phase [23]. The
strongly correlated phases that we describe here can be
viewed as generalizations of this spin-liquid phase.

Following the application of CF theory for rotating
bosons in the continuum [13], we construct composite
fermions by attaching a single vortex to each boson. The
CF transformation relates the flux density for the original
atoms n� and the effective flux for CFs n�� via

n�� ¼ n� � n; (2)

where the two signs correspond to attaching vortices of
opposite sign. Within a mean-field theory, the CFs are
assumed to be weakly interacting, and to form a Fermi
sea which fills the lowest energy states of the single-
particle spectrum. Incompressible states then occur when
the CFs completely fill an integer number of bands. In the
continuum, the single-particle spectrum consists of Landau
levels (LL), leading to an incompressible state each time an
integer number, �� ¼ n=n��, of CF Landau levels is filled

[13,14]. Applying this logic on the lattice leads to the
conclusion that the single-particle spectrum of the CFs is
the Hofstadter butterfly [16], now at a flux density n��.
Owing to the fractal structure of this spectrum, depending
on n�� there can be many such energy gaps, leading to

many possible incompressible states. To determine the
locations of these incompressible states, we need to know
the particle densities n which completely fill an integer
number of bands of the spectrum of CF’s at flux n��.
Generalizing from the continuum DOS for LLs, which is
proportional to the flux density, an analysis of the lattice
spectrum yields that, when filling all states up to any given
gap in the Hofstadter spectrum, the relation between n and
n�� remains linear [24,25], n ¼ ��n�� þ �, with an offset �.

The coefficients �� and � can be determined from the
Hofstadter spectrum by locating two points within the
same gap. Using the reverse of the CF transformation (2),
one obtains the lines of n, n� on which a nonzero gap is

predicted above the CF ground state.
Within a model of noninteracting CFs the relative mag-

nitudes of gaps follow from those in the single-particle CF
spectrum. The gaps inferred under this hypothesis are
shown in Fig. 1, in which the mode of flux attachment
[determined by the sign in (2)] is chosen to maximize the
gap. Note that the positive sign in (2) can be regarded either
as negative flux attachment [26], or as attachment of the
conjugate flux 1� n due to the particle-hole symmetry on
the lattice. Indeed, Fig. 1 shows symmetries under n� $
1� n� and n $ 1� n. In the hard-core limit, the

Hamiltonian itself enjoys these symmetries, so the parame-
ter space may be reduced to 0 � n, n� � 1

2 . In this quad-

rant, the lines emerging from the corner with n ¼ n� ¼ 0

and constant filling factor � � n=n� are the CF states

expected in the continuum limit [13,14]. Crucially, how-
ever, Fig. 1 shows a large number of other lines. These
correspond to new candidate incompressible states.
The preceding discussion conjectures candidates for

new types of correlated quantum liquids of bosons on
lattices. However, given that the mean-field CF theory is
an uncontrolled approximation, it is important to test these
predictions. There are competing condensed states on the
lattice [25,27,28]. Even in the continuum limit, some of the
correlated states predicted by composite fermion theory are
replaced by other strongly correlated phases [5], with only
� ¼ 1=2, 2=3, and 3=4 appearing to be described in this
form [14].
We have investigated the success of the CF construction

for the Bose-Hubbard model (1) using exact diagonaliza-
tion studies. We study the model forN particles on a square
lattice with Ns ¼ Lx 	 Ly sites, in the presence of 0 �
N� < Ns flux quanta. To limit finite-size effects, we im-

pose periodic boundary conditions (pbc, discussed further
below) giving the system the topology of a torus. Thus, we
identify possible bulk phases and determine their proper-
ties, from which the physics of a finite system in a confin-
ing potential may be deduced within the local density
approximation.
In order to compare the exact GSs with the CF theory, it

is useful to have a trial CF wave function. We generalize
the continuum construction [13] to allow not only for the
lattice, but also for the torus geometry, for which no
convenient formation exists even in the continuum limit.
We construct the trial CF state for bosons in a lattice,

�trialðr1; . . . ; rNÞ ¼ �JðfrigÞ 	�CFðfrigÞ; (3)

where�J and�CF are fermionic wave functions [29]. The
factor�J effects the flux attachment (2), and represents the
‘‘Jastrow’’ factor of the continuum wave function [13,30].

FIG. 1 (color online). Excitation gap of bosons on a lattice,
with particle density n and flux density n�, as predicted by a

model of noninteracting composite fermions. The bright lines
show parameters (n, n�) where the model predicts the appear-

ance of incompressible quantum fluids, and include cases (where
n=n� is not constant) which are not connected to the continuum

limit. We include data for n�� ¼ p=q, with q � 50.
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However, we define this factor in a form suitable on a
lattice and in the torus geometry, instead of using the
continuum form of �J [30]. We note that �J corresponds
to a filled Landau level of fermions at flux 
N. We gen-
erate �J on the lattice as the Slater determinant �J ¼
det½�
N

� ðr�Þ�, describing N fermions occupying the N

lowest energy states on the lattice with 
N flux indexed
by � ¼ 1; . . . ; N. This flux attachment is different from
that described by Chern-Simons theories on the lattice
[31], as it also includes an amplitude-modulation of the
wave function. The factor �CF is the wave function of the
CFs in the resulting effective field (2). This is the Slater

determinant �CF ¼ det½�N�
�

� ðr�Þ� of the N lowest single-

particle CF states at flux N�
� ¼ N� � N. For the cases

derived above (and illustrated in Fig. 1), these numbers
N and N�

� are such that the CFs fill an integer number of

bands. Note that, in contrast to the continuum limit where
the GSs have been studied within the lowest LL limit [5],
our CF state (3) does not include a projection to the lowest
LL. This is appropriate for the hard-core model that we
study, since (3) vanishes when the positions of any two
bosons coincide.

The description of the trial state (3) is completed by
discussing the pbc imposed on each of the functions. In the
most general case, one introduces twisted boundary con-
ditions for the bosons [7,32], defined by the phases �� ¼
ð�x; �yÞ, such that magnetic translations of a boson around

the two cycles of the torus (by L� in the�-direction) act as

� ! exp½i����. In the trial state (3), one may choose

boundary phases for the Jastrow- and CF-parts indepen-
dently, defining �J�, �

CF
� (affecting only the single-particle

states �� entering the Slater determinants). The sum of
these phases is constrained to match the pbc for the bosons
�J� þ �CF� ¼ ��. This leaves the freedom to vary �J� �
�CF� , which is a crucial ingredient to our construction: it

allows one to generate the set of states responsible for the
nontrivial GS degeneracy of these topologically ordered
phases on a torus [33]. It is easy to show that, with this free-
dom, in the continuum limit the wave functions (3) repro-
duce the two continuum Laughlin states at � ¼ 1=2 [32].
As an initial test, we have computed the overlaps

jh�trialj�exactij2 of our trial wave functions (3) with the
GSs on the lattice at � ¼ 1

2 as a function of n�. The over-

laps (not shown) are very close to those found with the
continuum Laughlin wave functions (closely reproducing
Fig. 2 of [10]). Thus, the continuum [32] and lattice states
(3) are very similar, up to the flux density n� ’ 0:3 at

which both fail to describe the exact GS.
Using our general construction (3), we can study for the

first time the influence of the lattice structure on other
continuum CF states. The state at � ¼ 2

3 has a GS degen-

eracy dGS ¼ 3 [32]. For each of the three lowest states of

the exact spectrum j�ðiÞ
exi, we find the trial CF state with

maximal overlap j�ðiÞ
triali and give their average overlap in

Fig. 2. The overlap is high and drops only above flux
densities of n� ’ 0:35. Previous numerical evidence for

this CF state is restricted to the lowest Landau level [5].
Our results show that, for sufficiently small n�, the CF

state (3) also describes the GS for hard-core interactions
(where LL mixing is strong).
Let us now return to the main focus of this Letter: the

new CF states that appear on the lattice. To investigate
these states numerically, we focus on the CF series derived
from the most dominant gap in a subcell of the Hofstadter
spectrum (cell L1 [19]), leading to a sequence with n� ¼
1
2 � 1

2n. To be able to study several different system sizes

for some states in this class, we select two points where (n,
n�) are fractions with small denominators, and the density

n is low enough to avoid competition with the continuum
Laughlin state: ( 17 ,

3
7 ), and ðn; n�Þ ¼ ð19 ; 49Þ.

We find multiple pieces of evidence for the formation of
strongly correlated incompressible phases at these values
of (n, n�). First, an analysis of the eigenvalues of the

single-particle density matrix of the GS shows that, as
the system size N increases, there are N eigenvalues of
order one. Thus, there is no evidence for condensation (an
eigenvalue that grows with N), so the GS is likely uncon-
densed and strongly correlated. Second, the spectra at these

FIG. 2 (color online). Average overlap of the CF states with
the exact eigenstates in the (approximately) threefold degenerate
GS manifold of the � ¼ 2

3 state.

TABLE I. Exact diagonalization results: gaps � and overlaps
of the exact ground state with the CF trial state with negative flux
attachmentOCF ¼ jh�trialj�exij2. We also give the Hilbert-space
dimension dimðH Þ for hard-core bosons. Where negative gaps
are indicated, the CF state is the first excited state.

n n� N Lx Ly � OCF dimðH Þ
1=7 3=7 2 2 7 0.156 0.437 91

1=7 3=7 3 3 7 0.156 0.745 1330

1=7 3=7 4 4 7 �0:032 0.2753a 20.5 k

1=7 3=7 5 5 7 0.0401 0.5631 324 k

1=7 3=7 6 6 7 0.0455 0.3284 5.2 M

1=9 4=9 2 2 9 0.113 0.3603 153

1=9 4=9 3 3 9 0.241 0.8407 2925

1=9 4=9 4 4 9 �0:036 0.1515a 58.9 k

1=9 4=9 4 6 6 0.071 0.3061 58.9 k

1=9 4=9 5 5 9 0.0945 0.4585 1.2 M

1=9 4=9 6 6 9 �0:0154 0.1957a 25.8 M

aOverlap shown for first excited state.
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densities typically show a single GS separated by a large
gap (see Table I). The gaps we find are larger than the
typical spacing of higher excited states, or the gaps at
typical spectra at nearby flux densities [34]. This indicates
that the system may be an incompressible liquid with a
nondegenerate GS on the torus. This is consistent with the
CF state, in which one expects a GS degeneracy of one,
applying the reasoning of Ref. [16].

Further direct evidence for the CF phase is obtained by
taking the overlap of the exact GSs with the trial CF states
(3). As detailed in Table I, we find that, in general, the trial
CF states have significant overlap with the exact GS.
Notable exceptions occur for certain cases (N ¼ 4 for n ¼
1=7 and n ¼ 1=9, and N ¼ 6 for n ¼ 1=9) where the exact
GS has a different momentum from the CF state so the
overlap vanishes identically. In these cases, we find large
overlap of the CF state with the lowest lying excited state
(as shown in Table I). We account for this behavior as
arising from the existence of a competing broken-
symmetry ‘‘stripe’’ phase that is stabilized by delocaliza-
tion of the particles around the short direction, similar to
finite-size effects in continuum studies on the torus [35].
This interpretation is confirmed by our studies at n ¼ 1=9,
which show that the GS is sensitive to the lattice geometry
(two aspect ratios Lx 	 Ly ¼ 4	 9 and 6	 6 are avail-
able for N ¼ 4 at n ¼ 1=9). The GS reverts to be of the CF
form for the more isotropic aspect ratio. Unfortunately, no
geometry with smaller aspect ratio is available for the
systems (N ¼ 4 at n ¼ 1=7 and N ¼ 6 at n ¼ 1=9). Still,
our results indicate that, for the system at ðn; n�Þ ¼ ð17 ; 37Þ,
the composite fermion state dominates the competing
(striped) state at large system sizes, and maintains a very
high overlap with the exact GS. A similar trend is evident
for ðn; n�Þ ¼ ð19 ; 49Þ, but here the available geometries at
N ¼ 6 are still very asymmetric, so we cannot confirm the
preference of the CF state in this case.

While a large overlap with the trial CF state is highly
suggestive that the phase is of the CF type, it is very useful
to have other tests of the qualitative features of the state. As
noted above, the nondegenerate GS is consistent with the
expected topological degeneracy of the CF state. Another
important qualitative test is provided by Chern numbers
[7,36], which provide a highly nontrivial test of the exis-
tence and nature of the topological order of a many-body
quantum phase. We have evaluated the Chern number C for
the GSs with nonzero overlap with the CF states for sys-
tems up to N ¼ 5. In all cases, we find that C ¼ 2. This is
the value expected for the CF phase [16]. This agreement
lends very strong evidence that the phase appearing in the
numerics is of the form predicted by the CF theory.

In conclusion, we have presented numerical evidence for
novel types of correlated quantum fluids of bosons on
lattices; these are FQHE states which have no counterpart
in the continuum limit.
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jâ

y
rj jvaci.

[30] N. Read and E. Rezayi, Phys. Rev. B 54, 16864 (1996).
[31] E. Fradkin, Phys. Rev. Lett. 63, 322 (1989).
[32] F. D.M. Haldane and E.H. Rezayi, Phys. Rev. B 31, 2529

(1985).
[33] X. G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).
[34] Given the limited number of data-points, we do not

attempt a finite-size scaling of the gaps.
[35] N. R. Cooper and E.H. Rezayi, Phys. Rev. A 75, 013627

(2007).
[36] Y. Hatsugai, J. Phys. Soc. Jpn. 74, 1374 (2005).

PRL 103, 105303 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 SEPTEMBER 2009

105303-4


