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We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with
Chern number |C| > 1. From composite fermion theory, states are predicted to be found at filling factors ν =
r/(kr|C| + 1), r ∈ Z, with k = 1 for bosons and k = 2 for fermions. Here, we closely analyze these series in both
cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular,
we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number
|C| bands, realized near flux density nφ = 1/|C|. Near these points, the Hofstadter model requires large magnetic
unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of
energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations.
Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we
show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy
predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor
ν = 1/(k|C| + 1) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact
interactions in |C| = 2 and |C| = 3 bands, our data for the composite fermion states are compatible with a finite
gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for
fermions with nearest-neighbor interactions in |C| > 1 bands. For cases with a clear gap, we confirm that the
thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the
nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions
for |C| > 1 states are smooth functions for positions separated by |C| sites along both axes, giving rise to |C|2
sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated
with a bosonic integer quantum Hall effect (BIQHE): For ν = 2 in |C| = 1 bands, we find a strong competing
state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model;
for ν = 1 in |C| = 2 bands, we present additional data confirming the existence of a BIQHE state.
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New realizations of artificial gauge fields can be achieved
by light-matter coupling in cold atoms [1–8], by more general
Floquet systems with periodically modulated Hamiltonians
[9–11], or possibly by exploiting spin-orbit coupling in two-
dimensional materials [12,13]. In conjunction with repulsive
interactions, they provide exciting opportunities to observe
interesting flavors of fractional quantum Hall physics [14–19].
The recurring motif in these systems, called “fractional Chern
insulators” (FCIs) [20], is the existence of topological flat
bands with nonzero Chern numbers that mimic the topological
properties of the lowest Landau level (LLL) of particles in a
magnetic field [13,20–27]. Although, for unit Chern number,
the physics of FCIs is continuously connected to Landau level
physics [28–30], this connection is no longer possible for |C| >

1, resulting in a series of lattice-specific fractional quantum
Hall states [15–18]. Furthermore, FCIs in higher Chern number
bands have the potential for exotic physical phenomena,
such as hosting lattice defects carrying non-Abelian statistics
[31–33].

The Harper-Hofstadter model [34–36] has played a special
role in the study of quantum Hall effects. It was the first model
in which the Chern number was identified as the topological
invariant determining the quantization of the Hall conductance

in integer quantum Hall states [37]. The first theory of FCIs,
or fractional quantum Hall states on lattices, was formulated
by Kol and Read in the context of the Hofstadter model [14],
generalizing early notions [38–40] and using the framework
of composite fermion theory [41]. Furthermore, the Hofstadter
model has provided the basis for the first proposals for FCIs in
optical lattice realizations of cold atomic gases [15,16,42,43].
More recently, the Hofstadter model represents one of the
first examples for experimental realizations of artificial gauge
fields in cold atomic gases [2,3,5,44], although access to
highly entangled low-temperature phases will require further
advances in cooling or adiabatic state preparation [45–47].

The Harper-Hofstadter model provides bands of any Chern
number C ∈ Z, with varying magnitudes of the single-particle
gap. In this model, it is well understood how to construct
isolated Chern bands of any Chern number that can support
fractional quantum Hall liquids [18]. However, numerical
studies have been challenging, since finite-size systems have
to simultaneously satisfy several integer relations between
the number of particles, the number of flux quanta and the
number of sites—which are incommensurable in general.
Hence, having chosen a specific flux density and filling factor,
one is led to study a series of systems with varying aspect
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ratios. Here, we would instead like to take a proper two-
dimensional thermodynamic limit for the system while keeping
the aspect ratio fixed and square, since it is expected that square
Hofstadter lattices are especially stable [48]. It is possible to
identify finite-size geometries which are exactly or almost
square, by considering large magnetic unit cells (MUCs)
[18,49]. Moreover, the limit of large MUCs is appealing, as
it provides Chern bands with a flat dispersion and additionally
a perfectly flat band geometry [18,49]. Hence, the Hofstadter
model allows one to optimize the criteria of band flatness
and flat geometry, shown to be correlated with the stability of
fractional Hall liquids for the |C| = 1 cases [49–55]. We refer
to the limit of nφ → 1/|C| as the effective continuum limit, to
distinguish it from the continuum limit nφ ≡ p/q → 0. The
continuum limit is expected to exist, as nφ → 0 implies that
the magnetic length �0 � a, where a is the lattice constant,
so the discreteness of the lattice should be irrelevant and the
continuum physics is recovered. For our numerical analyses,
we further define the thermodynamic (effective) continuum
limit as the (effective) continuum limit subsequently taken to
large particle number (N,q → ∞).1

In this paper, we study the stability of quantum Hall states
of the Abelian composite fermion series ν = r/(|kC|r + 1)
[18], with k = 1(2) for bosons (fermions), in Chern bands with
|C| = 1,2,3 in the Hofstadter model, focusing on finite-size
square systems. To find such configurations, we vary the
flux density while moving within a series of single-particle
bands with fixed Chern number, allowing us to find finite-size
configurations with an aspect ratio of (approximately) one,
as well as matching a target filling factor. The results from
such different realizations of Chern bands can be combined
into a single measure for the stability of the phase, owing to
the known scaling of the many-body gap with the number of
sublattices [49].

The ground-state degeneracy of these states agrees with the
predictions of composite fermion theory. As expected, we find
that states with filling factor ν = 1/(k|C| + 1) are the most
robust, with the effective continuum limit remaining approx-
imately independent of N and inversely proportional to |C|.
Our results show considerable finite-size effects for most other
filling fractions, leaving the behavior in the thermodynamic
limit indeterminate. While taking the thermodynamic effective
continuum limit does not generally alleviate these finite-size
effects, we find some system sizes where competing states are
eliminated when square geometries are considered.

To further characterize the target composite fermion states
or their competing phases, we analyze their two-particle
correlation functions, and for select examples also their particle
entanglement spectra (PES). In our microscopic model, we find
that correlation functions are modulated with a period of |C|
sites along both the x and y axes of the square Hofstadter
model, yielding the visual appearance of |C|2 smooth correla-
tion functions.

1In this paper, the (effective) continuum limit at fixed aspect
ratio is denoted as limN,q→∞(q�) = limN→∞(limq→∞(q�)) and is
distinguished from the limit at fixed flux density: limq,N→∞(q�) =
limq→∞(limN→∞(q�)).

This paper is organized as follows: In Sec. I, we intro-
duce the Harper-Hofstadter Hamiltonian and explain how
to obtain finite-size geometries with approximately square
aspect ratio for the desired filling factors. In Sec. II, we
present our numerical evidence for FCI phases of bosons
in |C| = 1,2,3 Hofstadter bands and fermions in |C| = 1,2
Hofstadter bands, including many-body spectra, ground-state
correlation functions, and particle entanglement spectra. In
Sec. III, we comment on the overall trends regarding the
thermodynamic effective continuum limits and analyze the role
that the Chern number plays in the scaling. Finally, in Sec. IV,
we provide conclusions on the stability of FCI phases in the
effective continuum limit of |C| > 1 Harper-Hofstadter bands
and suggest avenues for future research.

I. MODEL

A. Single-particle Harper-Hofstadter Hamiltonian

The single-particle Hamiltonian for the Harper-Hofstadter
model [34] was obtained as the tight-binding representation of
a single-orbital lattice model subject to Peierls’ substitution for
a homogeneous magnetic field B = Bez (with B = ∇ × A),
giving

H0 = −
∑
i,j

tij e
φij c

†
j ci + H.c., (1)

with complex hoppings of phase φij relating to the vector
potential A such that

φij = e

h̄

∫ rj

ri

A · dl + δφij . (2)

In the Landau gauge A = Bxey , and for rational flux density
nφ = Ba2 = p/q (with p and q coprime), the phases φij natu-
rally repeat under translations Tqaex

by qaex , and also under the
translation Taey

. This corresponds to a MUC of q × 1 sites. (For
simplicity, we set a = 1, below.) However, other choices for
MUC geometries lx × ly = q with the same area can be made,
and thus enclosing the same number of magnetic flux quanta.
These choices correspond to a gauge freedom in the problem,
encoded in terms of additional phase factors δφij occurring in
the tight-binding model. These phase factors can be thought of
as an additional phase generated by magnetic translations for
hopping terms crossing the MUC boundary, or alternatively
the tight-binding parameters can be expressed in terms of a
vector potential in a periodic gauge, with A(r + lμeμ) = A(r)
[56]. For an explicit construction of the periodic gauge, see
Appendix A. We further note that the choice of the MUC affects
the definition of the momenta for single-particle eigenstates,
and in Appendix B, we provide an additional note expanding
on how the states are remapped throughout the Brillouin zone
under such gauge transformations.

Within the Hofstadter spectrum, band gaps of any cumu-
lative Chern number can be found. In order to facilitate our
numerical work, we closely examine specific flux densities at
which the lowest band has Chern number |C| and remains well
separated from higher excited bands of the Harper-Hofstadter
model. Following Möller and Cooper [18], such cases are
realized when the density of states ns(nφ = p/q) = 1/q,
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corresponding to flux densities

nφ = p

|C|p − sgn(C)
≡ p

q
, p ∈ N. (3)

In this paper, we will focus on the cases (3) in the limit of large
q and consider flux densities in the close vicinity of points
nφ = 1/|C|. At other nearby flux densities, we would find a
low-energy manifold made up of several bands with the same
cumulative Chern number C. However, we do not explore such
cases here in order to maximize the number of k points in the
Brillouin zone in our numerics.

B. Hofstadter models and Chern insulators

Given some hesitations in the literature, let us discuss
whether (partially) filled bands of the Harper-Hofstadter
Hamiltonian (1) should be considered (fractional) Chern in-
sulators. One of the superficial reasons why Chern insulators
might be dissociated from the Harper-Hofstadter model is that
the latter represents a homogeneous magnetic field, or constant
flux per plaquette, while the former is simply defined as
having bands with finite Chern numbers arising from complex
hopping phases. It could further be argued that the Hofstadter
model is characterized by a finite flux per MUC, while the
flux averages to zero in Chern insulators like the Haldane
model [21]. However, in existing cold-atom realizations of
the Hofstadter model, there is no physical magnetic field
present—rather, these experiments realize the model directly
as a tight-binding lattice with complex hopping terms induced
by laser-assisted hoppings or more general time-modulated
Floquet-Hamiltonians [7,57] in order to mimic the Aharonov-
Bohm effect of a magnetic field.

The overall flux threading the lattice is also not a good
distinction of Hofstadter models from generic cases, given that
flux is defined only modulo the flux quantum �0 in a lattice
geometry and so any integer number of flux quanta can be
inserted within a given plaquette of the lattice without altering
the physics. A finite-size realization of the Hofstadter model
requires an integer number of flux quanta per MUC; thus it can
always be interpreted as a model without net flux: Any excess
flux can be neutralized by adding an opposite flux through one
of the plaquettes in a unit cell [58]. Indeed, one could argue
that any finite-size implementation of the complex hopping
phases (2) that is compatible with periodic boundary conditions
effectively corresponds to such an insertion of neutralizing
flux, which gives rise to the δφij term in Eq. (2).

Comparing the translational symmetries of Hofstadter mod-
els with other general tight-binding models with Chern bands
[13,20,23,24], we can finally find one formal distinction
between these cases. The translational symmetry group of
the Harper-Hofstadter Hamiltonian is smaller than the transla-
tion symmetry of the underlying lattice potential due to the
commensurability of the two length scales in the problem.
By contrast, generic models typically have a full translational
symmetry group identical to that of the lattice potential. In-
versely, we could say that the translational symmetry group of
the Hofstadter lattice can be enhanced if we allow simultaneous
translations and gauge transformations (effectively translating
the origin of the MUC), while no additional symmetries can
be found in generic models.

As the terminology of (fractional) Chern insulators focuses
on the topological properties, it seems natural to include those
states realized in the Chern bands of the Hofstadter model.
Conversely, since the Hofstadter model is closely related to
physical magnetic fields, the terminology of lattice fractional
quantum Hall states is also appropriate for these models.

C. Many-body Hamiltonian

We study the many-body physics of interacting particles in
the Harper-Hofstadter model, described by the Hamiltonian

H = H0 + PLB

⎡
⎣∑

i<j

V (ri − rj ) :ρiρj :

⎤
⎦PLB, (4)

where PLB denotes the lowest band projection operator and
:ρiρj : indicates the normal ordering of the density operators,
with site labels i, j .

In this paper, we extend the work of Möller and Cooper
[18] on bosonic contact interactions (Vij = Uδij ) as well as
considering the case of fermions with nearest-neighbor (NN)
interactions (Vij = V δ〈i,j〉). In both cases, we target a number
of known candidate phases for incompressible quantum Hall
states.

We explore the spectrum of the many-body Hamiltonian (4)
using exact diagonalization calculations and identify incom-
pressible states by means of their ground-state degeneracy,
many-body gap �, as well as the correlations and entan-
glement properties of the corresponding ground-state wave
functions. The incompressible phases which we find show a
clear quasidegenerate ground state, such that the gap � to
the excited states is much larger than the splitting between
states in the ground-state manifold or the typical level spacing
among higher lying excitations. We quote the gap in units of
the interaction strength U (V ), implicitly setting U = V = 1,
below.

D. Target FCI phases in general Chern bands

Several families of incompressible quantum Hall states have
been proposed to occur in Chern bands with higher Chern
numbers |C| > 1, most importantly including generalizations
of the Jain states [17,59,60], an Abelian series of states
arising from the composite fermion construction [14,16] and
generalizations of the non-Abelian Read-Rezayi states [61] to
higher Chern bands [17]. There were also reports of states that
simultaneously break translation symmetries while displaying
a quantized Hall response [19].

The incompressible character of these phases is expressed
by a preferred density of particles, measured in terms of
the number density per unit area of accessible single-particle
states. While this manifold of single-particle states is trivially
given by the continuum Landau levels in continuum fractional
quantum Hall states, the relevant low-energy subspace for
Chern insulators is set by a single-particle gap of the single-
particle dispersion in a tight-binding model that is large
compared to the dispersion of the low-lying band(s).
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From composite fermion theory, one predicts a series of
Abelian quantum liquids [14,16] at filling factors

ν(k,r,C) =
∣∣∣∣ n

ns

∣∣∣∣ = r

|kC|r + 1
, (5)

where k is the number of flux quanta attached to the particles,
|r| is the number of bands filled in the composite fermion
spectrum, and its sign indicates the relative sign of the Chern
number C∗ for the composite fermion band relative to the
Chern number C of the low-energy manifold [18]. The states
(5) carry a ground-state degeneracy of d = |kCr + 1| [14,18].

Where required, we consider a number of other competing
phases. Prominently, this includes the states of the bosonic
Read-Rezayi series, found at filling factors ν = κ/2 in C = 1
bands [61] (with κ ∈ Z+), which carry a ground-state degen-
eracy dRR = κ + 1. The generalizations of the Read-Rezayi
states to higher Chern bands [17] do not generically occur
at the same filling factors as the composite fermion states in
Eq. (5), so we do not encounter them explicitly. At sufficiently
weak interactions, generically one may find competition with
condensed phases [62–65]. These may survive up to large val-
ues of the interaction at time-reversal symmetric points of the
Hofstadter spectrum, but are likely less competitive elsewhere.
Further instabilities include density-wave or crystalline orders.
These were found to be stabilized in related time-reversal
symmetric flat band models [66], and are generically expected
to be among the competing phases in Chern insulator models.

E. Scaling to the continuum limit at fixed aspect ratio

Finite-size geometries of the square Harper-Hofstadter
model are determined by the number of sites in the x and
y directions Nx , Ny , and the total number of flux quanta Nφ

piercing the system. Each geometry may allow an additional
gauge choice for the shape of the MUC given by lx and ly sites,
and the number of repetitions Lx and Ly of the MUC within
the simulation cell along these axes. In this paper, we shall be
looking at square systems in terms of the total number of sites,
hence systems with a unit aspect ratio:

R = Nx

Ny

= Lxlx

Lyly
= 1. (6)

Note that the spectra are gauge invariant and depend only on
the total system size but not on the shape of the MUC. However,
the definition of momentum depends on the choice of MUC,
as further discussed in Appendix B.

We examine the filling factors (5) for Chern bands |C| =
1,2,3 with |r| = 1,2,3 and a finite particle number N set by the
available Hilbert space sizes, typically ranging up to about 10–
20 particles. For each case, we generate a sample of finite-size
systems including all possible square geometries in a specified
range of effective flux densities nφ = p/q subject to Eq. (3). A
restriction is placed on the numerator such that 2 � p � 1000,
where low p value configurations are excluded because they
may correspond to band gaps with a lower Chern number, and
the upper bound is determined by the computational cost and
numerical accuracy of our calculations of the single-particle
spectrum.

For certain cases, the restriction on the numerator of the
effective flux density does not yield any square configurations.

In these situations, we look for approximately square configu-
rations, with a fixed maximum error ε ≈ 1% such that

δR =
∣∣∣∣Nx

Ny

− 1

∣∣∣∣ � ε, (7)

taking Nx > Ny by convention. In practice, the allowable
deviation of the aspect ratio from one is adjusted slightly so that
we obtain a comparable sample size, or number of geometries,
for each filling factor ν.

In Ref. [49], Bauer et al. undertook a similar study for
models with short-range repulsive interactions in the C = 1
bands of the Hofstadter model. Using geometric considerations
for the Laughlin and Moore-Read states for N = 8 particles,
they found that the many-body gap scales as � ∼ 1/q for
bosons and � ∼ 1/q2 for fermions. They also found approx-
imate continuum limits for nφ → 0 for the three phases they
considered.

As shown below, we find that the (effective) continuum
limit is helpful for examining the stability of candidate in-
compressible Hall states, as it improves the effectiveness of
finite-size scaling analyses. For comparison, we also undertake
the conventional finite-size scaling at fixed flux density nφ , as
previously considered by Möller and Cooper [18]. An extract
of our additional data for this thermodynamic limit is shown
in Appendix C.

II. RESULTS

We present results on fractional quantum Hall states in
Harper-Hofstadter bands with higher Chern number. However,
to establish our methodology, we first review the case of
|C| = 1 bands. Our results reproduce the known continuum
limit, i.e., the well-known quantum Hall physics of the LLL of
a homogeneous magnetic field. Our results go beyond previous
studies on the Hofstadter lattice in that we study fermionic
quantum Hall states in addition to bosonic ones, and we
consider the thermodynamic limit in addition to the continuum
limit.

A. FCIs in |C| = 1 Harper-Hofstadter bands

1. Bosonic states

We first review the case of bosons in Chern number |C| = 1
bands, which are well known to support fractional quantum
Hall states in the continuum LLL [22,67,68]. We consider
states of the Jain series (5) with |C| = 1, |r| = 1,2,3 and
we restrict ourselves to Hilbert space dimensions dim{H} <

107, which typically allows us to consider particle numbers
N � 12.2 Furthermore, there are no states corresponding to
r = −1, as Eq. (5) is undefined for this value. Overall, we
have considered 24 different combinations of particle size and
filling factor, with an average of ∼38 different geometries
for each, giving a total of 921 different exact diagonalization
calculations. Apart from exceptional cases that we discuss
in detail below, we found that all candidate states show
a degenerate ground-state manifold composed of |krC + 1|

2Here we neglect trivially small particle numbers and cases where
finite-size effects are clearly dominant.
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FIG. 1. Magnitude of the gap for the bosonic 12-particle ν = 3/4
state in the |C| = 1 band, as a function of MUC size, q. (a) Log-log
plot of�vsq−1. (b) Scaling ofq� to a constant value in the continuum
limit nφ → 0.

states, in line with the predictions of composite fermion theory.
For each system that we examine, we have plotted the energy
gap above the ground-state manifold, �, against the MUC
size, q, to test whether the expected reciprocal scaling [49] is
realized. An example scaling for an r = 3 state with ν = 3/4
is shown in Fig. 1(a).

Next, we test the scaling hypothesis and extract the coeffi-
cient for � ∝ q−1 at large MUC size, shown in Fig. 1(b). For
|C| = 1, this is the continuum limit. Theoretically, the large-q
limit of q� should be independent of q, while finite-size effects
imply variations for small q. When establishing the continuum
limit, we thus neglect small-q outliers to take account of this
fact. Notice that, as a result, the line of best fit in Fig. 1(a) does
not exactly correspond to the q� limit in Fig. 1(b). Using this
procedure, we find agreement with the value of the many-body
gap for the bosonic Laughlin state calculated by Bauer et al.
[49] and we now go beyond their work by considering the
thermodynamic limit, as well as the continuum limit, for a
large sample of systems.

We collect the continuum limit of q� for the various filling
factors under consideration at all available particle numbers
(6 � N � 12). In Fig. 2, we plot how the limiting value
limq→∞ q�(N,q) varies with particle number for each filling
factor. We attempt to proceed with a scaling extrapolation to
the thermodynamic continuum limit on the basis of an inverse
regression for limq→∞ q� against N−1. Using this approach,
we examine, for each filling factor, the limq→∞ q� limit as
N−1 → 0.

Figure 2 shows the continuum limits for the five filling
factors under consideration. Note that the error bars due to
the extrapolation in q → ∞ are negligible for these points
on the scale of the plot. We have also verified that these data
agree with many-body gaps of the corresponding states in the
continuum LLL on the torus. We include data on a comparison
of the correlation functions, below.

The results are insightful in that they illustrate the caveats of
interpreting data on finite-size geometries. Composite fermion
theory suggests that the stability of states in the Jain series
decreases with |r|. However, this is only partially borne out by
the data.
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FIG. 2. Finite-size scaling of the gap to the thermodynamic
continuum limit at fixed aspect ratio, for bosonic states in the |C| = 1
band. The extrapolation to the y axis is shown for the robust ν = 1/2
states. The dashed line for the ν = 3/2 series corresponds to the
scaling behavior given a ground-state degeneracy of 4, as predicted
by Read-Rezayi theory. Squares, circles, and triangles denote states
with |r| = 1,2,3, respectively, where the filled (hollow) symbols
correspond to positive (negative) r . All of the error bars are smaller
than the data points on the scale of the plot.

First, we find that the Laughlin state corresponding to r = 1
has the largest gap and has negligible finite-size corrections for
the gap in the continuum limit. In this case, we also see close
agreement of the limiting value obtained from a finite-size
scaling at fixed flux density. [The corresponding data are shown
in Appendix C, Fig. 21(a).] We extrapolate a thermodynamic
continuum limit of limN,q→∞(q�) = 0.64 ± 0.01 in this case,
where the error given is the asymptotic standard error in the
linear regression.

For the next states in the series, we find that the r = 2, ν =
2/3 state has a gap that reduces approximately linearly with
inverse system size, while the r = 3, ν = 3/4 state appears
more stable. By contrast, analyses of continuum quantum Hall
states in the LLL (on the sphere) show that both of these states
are stable and the latter has the smaller gap [68]. Owing to
the higher symmetry, continuum calculations enable slightly
larger system sizes to be calculated, resulting in more accurate
estimates for the gap by including larger system sizes. Note also
that we have not considered data beyond Hilbert space sizes of
107 for our comprehensive sampling of different geometries,
while larger Hilbert spaces can be considered for single cases.
Despite the fact that our data are not sufficient to ascertain the
size of the gap in the thermodynamic continuum limit for these
states, reassuringly, all of our simulations at these filling factors
did identify the expected ground-state degeneracies (with d =
3 or d = 4, respectively) and a clear separation of scales for
the gap.

For the states at negative effective flux [69,70], we see
an interesting competition with the Read-Rezayi series, in
line with the results for the continuum LLL [22,71]. The
r = −2 state is interesting in that it occurs at the integer filling
factor ν = 2, so it is a potential example of a bosonic integer
quantum Hall effect (BIQHE) [16,18,46,72,73]. As the BIQHE
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FIG. 3. Energy spectra for bosonic states in the |C| = 1 band. (a) The 14-particle ν = 2 state with p = 848, resolved to n = 6 states per
sector. (b) The 12-particle ν = 3/2 state with p = 969, resolved to n = 3 points per sector.

is not a fractionalized phase, it is associated with a singly
degenerate ground state. However, our exact diagonalization
calculations show higher ground-state degeneracies for our
target Hamiltonian (4), consisting of onsite repulsions pro-
jected to the lowest Hofstadter band. In particular, we find
ground-state degeneracies of dN=14 = 2 and dN=16 = 2 or 6 for
the N = 14 and N = 16 particle systems, respectively, while
other system sizes are compatible with an interpretation as a
singly degenerate ground state. The N = 14 spectrum is shown
in Fig. 3(a). The realized degeneracies are inconsistent with
the interpretation as a BIQHE state. The k = 4 Read-Rezayi
state could be an alternative candidate for this filling, but it
would have a d = 5-fold degeneracy for N divisible by 4 [61].
In this context, we note that in order to stabilize the Read-
Rezayi state in the continuum LLL, a small amount of dipolar
interaction is required [71]. At any rate, our findings suggest
that unlike the BIQHE in |C| = 2 bands (see Sec. II B 1), the
ν = 2 state is not realized in the single |C| = 1 band of the
band-projected Harper-Hofstadter-Hubbard Hamiltonian (4).
It therefore seems likely that the ν = 2 BIQHE state reported
in a recent DMRG study for hardcore bosons requires at least
the two lowest bands to be stabilized, which would be quite
similar to the situation in two-flavor quantum Hall states [73]
or Chern number |C| = 2 bands [16,18,74].

Finally, for the r = −3 series with ν = 3/2, we find a
marked reduction of the gap above the second-lowest state,
so the degeneracy of d = 2 predicted by composite fermion
theory does not describe this phase well. As observed in the
continuum LLL [75], the k = 3 Read-Rezayi state appears to
be a good candidate for this filling, as a stable gap appears to
form above the lowest d = 4 states, in line with the expected
ground-state degeneracy for this Read-Rezayi state. A full
spectrum for the N = 12 particle state is given in Fig. 3(b), and
the finite-size scaling of the gap inferred for the Read-Rezayi
states is shown as dotted lines in Fig. 2—these data are
consistent with a finite gap in the thermodynamic continuum
limit, even without the addition of long-range interactions [75].

In order to further characterize the different candidate
states, we calculate the density-density correlation functions
g(r) = 〈ρ(r)ρ(0)〉 for the different ground states, as explained
in Appendix D. In order to establish the accuracy of our code,

we have further verified that correlations approach the exact
continuum result for the corresponding state in the continuum
Landau level on a torus (see Appendix E). Our results show
close agreement at short distances, while there are slight
deviations at larger separations. We interpret these findings
as being most likely a consequence of finite precision floating
point arithmetic, as discussed in Appendix E.

Correlation functions for all available filling factors are
shown in Fig. 4, based on the lowest-lying ground state at
zero momentum. Note that the Laughlin state in Fig. 4(a)
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FIG. 4. Density-density correlation functions for bosonic states in
the |C| = 1 band. The plots are shown for lowest-lying ground state
in the (kx,ky) = (0,0) momentum sector, with (a) r = 1: ν = 1/2,
N = 8, p = 99; (b) r = 2: ν = 2/3, N = 10, p = 134; (c) r = −2:
ν = 2, N = 20, p = 91; (d) r = 3: ν = 3/4, N = 9, p = 107; (e)
r = −3: ν = 3/2, N = 9, p = 97.
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displays a correlation function that has saturated to a nearly
constant value at large distances, with a zero correlation hole
at zero separation. This is the expected form of the Laughlin
correlation function and may be solved analytically for the
torus, as discussed in Appendix E. For all other states, we find
oscillations that are generally stronger for the states with higher
|r| values. The relatively small isotropic fluctuations of the
correlation profile in Fig. 4(a) may be an artifact of finite-size
effects. However, the remaining oscillations in Figs. 4(c), 4(d),
and 4(e) are indicative of either states with longer correlation
lengths or potentially competing density wave instabilities. For
example, the most marked oscillations are seen for the N = 9,
ν = 3/4 state in Fig. 4(e). These oscillations also break the
rotational symmetry as they occur predominantly along the
x axis for this geometry, which may be a signature of an
instability toward charge density wave formation. For the states
at ν = 3/2 and ν = 2, the correlations show a local maximum
at zero separation, followed by a shallow correlation hole,
which could be consistent with the interpretation as clustered
Read-Rezayi states.

To summarize, the |C| = 1 boson data yields well-defined
continuum limits q → ∞, with negligible errors due to the
extrapolation to large MUCs. From the cases considered,
we can conclude that bosons in the |C| = 1 Chern number
bands obey the expected scaling relations for the gap, and we
obtain a well-converged continuum limit with no exceptions.
However, extrapolation of these values to the thermodynamic
limit remains difficult to achieve, and is prone to finite-size
effects. The predictions of composite fermion theory apply
only to a subset of possible composite fermion states, due to
both finite-size effects and the apparent competition with states
of the Read-Rezayi series or other competing phases such as
density wave instabilities.

2. Fermionic states

Building on our analysis for bosonic states, we carry out
a corresponding study for fermions in the |C| = 1 band. As
before, we consider cases with |r| = 1,2,3 and typical values
of 6 � N � 12 arising from the constraint on the Hilbert space
dimension dim{H} < 107. Note the Hilbert space of N bosons
in a |C| = 1 band with Nφ flux maps to the Hilbert space of
fermions at N + Nφ − 1 flux in the continuum, so the Hilbert
space dimensions for the Jain states are identical for bosons
at fermionic states of a given r value. They are essentially the
same on the lattice also, up to different numbers of conserved
momenta. Hence, we are able to obtain a comparable sample
of geometries as in the previous section. The r = −1 series
is omitted because this corresponds to a band insulator, so
composite fermion theory is not relevant. Overall, we have
considered 18 different combinations of particle number and
filling factor, with an average of ∼28 different geometries
for each, and a total of 498 different exact diagonalization
calculations underlying the data in this section.

For each filling factor, we plot the energy gap, �, against
the MUC size, q, which reproduces the inverse-square relation
� ∝ q−2 expected for fermions [49], as illustrated in Fig. 5 for
the 20-particle ν = 2/3 data point.

From composite fermion theory, the expected ground-state
degeneracy is |krC + 1| with k = 2 for fermionic systems.
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FIG. 5. Magnitude of the gap for fermionic 20-particle ν = 2/3
state in the |C| = 1 band, as a function of MUC size, q. (a) Log-log
plot of�vsq−1. (b) Scaling ofq� to a constant value in the continuum
limit nφ → 0.

This is indeed realized in all the observed energy spectra. As
before, we find agreement with the value of the many-body
gap in the continuum limit for the N = 8 fermionic Laughlin
state considered by Bauer et al. [49].

For all fermionic candidate states, we examine the con-
tinuum limit of q2� at large MUC size, as demonstrated in
Fig. 5(b). As seen previously, finite-size effects may result in
fluctuations at small q, so we neglect outliers at small q when
determining the continuum limit.

Figure 6 shows the thermodynamic continuum limiting
behavior for the five filling factors under consideration. The
sample size shown is comparable to that in Fig. 2. Notice
that the r = 1 series (this time corresponding to ν = 1/3)
displays very minor finite-size effects. In Appendix C, we
also compare this limit against the finite-size scaling at fixed
flux density, followed by extrapolation of the thermodynamic
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FIG. 6. Finite-size scaling of the gap to the thermodynamic
continuum limit at fixed aspect ratio, for fermionic states in the
|C| = 1 band. The extrapolation to the y axis is shown for the
robust ν = 1/3 and ν = 2/3 states. Squares, circles, and triangles
denote states with |r| = 1,2,3, respectively, where the filled (hollow)
symbols correspond to positive (negative) r . All of the error bars are
smaller than the data points on the scale of the plot.
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values to the continuum limit. Both orders of limits agree
well, as shown in Fig. 21(b). Compared to the data for bosons
in Fig. 21(a), we note that finite-size corrections are more
noticeable for smaller system sizes. The gap in the continuum
limit oscillates for small particle number but gradually settles
to a well-defined thermodynamic continuum limit, which we
extrapolate to be limN,q→∞(q�) = 2.56 ± 0.02. This nicely
illustrates the dissipation of finite-size effects as system sizes
exceed the correlation length.

The ν = 2/3 series also exhibits noteworthy behavior. We
find that the many-body gaps are closely related to the values
for ν = 1/3 states by particle-hole symmetry, via �(N ) =
�(Nφ − N ), although lattice models typically break this sym-
metry [76]. Clearly, the particle-hole symmetry re-emerges as
an exact symmetry in the limit of continuum Landau levels, so
it is reassuring that it is also approximated closely for finite flux
densities. In this case, we also extrapolate the thermodynamic
continuum limit to be limN,q→∞(q�) = 2.56 ± 0.02 to two
decimal places, perfectly matching the result for ν = 1/3.

For the ν = 2/5 state, we again find a particle-hole sym-
metric partner at ν = 3/5 with similar gaps. In both cases,
the finite-size gap appears strongly enhanced for small system
sizes, but settles to a relatively flat plateau for the last two
system sizes that we have evaluated. These data are indicative
of a gap in the thermodynamic continuum limit, in accordance
with established numerical results for the LLL. Likewise, the
ν = 3/7 state also yields finite gaps that are consistent with a
nonzero thermodynamic continuum limit.

Density-density correlation functions for the ground states
of the considered range of fillings are shown in Fig. 7.
As expected for spinless fermions, the correlation at zero
separation is identically zero due to Pauli exclusion. We note
that the Laughlin state in Fig. 7(a), as well as the particle-hole
symmetry-related ν = 2/3 state in Fig. 7(c), tend to a constant
correlation at large distances. However, the zero-separation
correlation hole is more distinct for the Laughlin state in
Fig. 7(a), analogous to that observed for the bosonic Laughlin
state in Fig. 4(a). As for |C| = 1 bosons, the r = 2 fermion
state shows minor isotropic fluctuations at large distances, as
shown in Fig. 7(b), which may be due to finite-size effects. The
density-density correlation functions for the |r| = 3 states in
Figs. 7(d) and 7(e), however, show large anisotropic oscilla-
tions in the y direction. For the ν = 3/7 state in Fig. 7(d), for
example, we observe a global maximum of almost double the
constant value at large distance observed for the Laughlin state
in Fig. 7(a). Again, these directional oscillations in the |r| = 3
states may be indicative of a charge density wave instability.

Overall, obtaining the fermion data is more computationally
expensive than the corresponding data for bosons due to
the higher ground-state degeneracies. However, for |C| = 1,
the Hilbert space dimensions are nearly identical, allowing
a large number of geometries and system sizes. As before,
we conclude that the scaling relations for the gap yield a
well-defined continuum limit for large q in all cases. As for
bosons, the composite fermion prediction for the stability
hierarchy is not observed, as the ν = 3/7 state appears to have a
larger gap than the ν = 2/5 state, possibly signaling a different
intervening phase. However, to the extent that our data are
conclusive, they indicate that all examined states can have a
finite gap in the thermodynamic continuum limit.
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FIG. 7. Density-density correlation functions for fermionic states
in the |C| = 1 band. The plots are shown for the lowest-lying ground
state in the (kx,ky) = (0,0) momentum sector, with (a) r = 1: ν =
1/3, N = 9, p = 76; (b) r = 2: ν = 2/5, N = 8, p = 124; (c) r =
−2: ν = 2/3, N = 18, p = 107; (d) r = 3: ν = 3/7, N = 9, p = 85;
(e) r = −3: ν = 3/5, N = 9, p = 134.

B. FCIs in |C| = 2 bands

The preceding study of |C| = 1 bands in the continuum
limit provides a solid foundation from which to explore higher
Chern number bands. However, naively extending the analysis
in Sec. II A presents two major challenges. First, the Hilbert
space dimension for systems with a higher Chern number is
considerably larger, since the filling factor is reduced, and
thus calculations at the same particle numbers are exponen-
tially more expensive. Additionally, the systematic process
of obtaining square configurations, outlined in Sec. I E, is
often too constricting to yield an adequate number of square
configurations for higher Chern numbers. This is a geometric
problem, which can be overcome by finding approximately
square configurations for the problem cases.

1. Bosonic states

As before, we start with bosonic systems with onsite inter-
actions, considering filling factors of the series (5) with |r| =
1,2,3. Again, we include particle numbers with Hilbert space
dimensions of dim{H} < 107. Overall, we have considered 23
different combinations of particle number and filling factor,
with an average of ∼22 different geometries for each, and a
total of 510 different exact diagonalization calculations under-
lying the data in this section. The final data for the effective
continuum limiting behavior for the six filling factors under
consideration are shown in Fig. 8. Notice that the q� values
are smaller than in the corresponding cases for |C| = 1 bands in
Fig. 2. The r = 1 series is again almost completely unaffected
by finite-size scaling, with an extrapolated thermodynamic
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effective continuum limit of limN,q→∞(q�) = 0.27 ± (4.4 ×
10−3). Finite-size effects are noticeable for all other series. We
will first discuss the scaling to the effective continuum limit
and then provide further discussion of the finite-size scaling
for the different states.

We find that the many-body gap scales inversely with q for
the |C| = 2 bands, also. However, we find stronger fluctuations
of the scaled gap around the limiting value, which is partly
related to the absence of square geometries. We illustrate
common behaviors by examining three examples in detail.

In Figs. 9(a) and 9(b), we display the 12-particle ν = 1
state. We choose this state as it has a high particle number and
behaves in the familiar and expected way; i.e., it produces an
adequate number of square configurations and its energy gap
can be determined without any ambiguity.

In Figs. 9(c) and 9(d), we display the six-particle ν = 1
state. We choose this state as an example of a case which does
not produce an adequate number of (or, indeed, any) square
configurations, in accordance to our systematic method (see
Sec. I E). Therefore, for this case, we consider all configura-
tions which are within an error ε � 2% of being square, as
this gives an adequate and comparable sample size of ∼10
configurations. This is noticeable by the deviations from a
straight line in Fig. 9(c) and in the clear oscillations in Fig. 9(d).
The various rectangular configurations obey slightly different
scaling relations with MUC size, which results in noticeable
oscillations in the plots (note, however, the small scale on
the y axes). In the cases where we use approximately square
configurations, the error in the effective continuum limit is no
longer negligible on the scale of the thermodynamic limit plot
and so must be taken into account. The precise determination of
errors for the effective continuum limit of q → ∞ is discussed
in Appendix F.

Finally, in Figs. 9(e) and 9(f), we display the 12-particle
ν = 2/3 state. We choose this state as a case of interest because
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FIG. 9. [(a)–(f)] Magnitude of the gap for bosonic states in the
|C| = 2 band, as a function of MUC size, q. [(g), (h)] Energy spectra
for the bosonic 12-particle ν = 2/3 state in the |C| = 2 band, at (g)
p = 384 and (h) p = 437. The plots are resolved to n = 2 points per
sector.

it is the largest system size for the ν = 2/3 state, shown in
Fig. 8. Yet, it retains a strong geometry dependency. Note that
these data are based on configurations which are within ε �
1% of being square. Figure 9(e) shows the overall reciprocal
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FIG. 10. Density-density correlation functions for bosonic states
in the |C| = 2 band. The plots are shown for the lowest-lying
ground state in the (kx,ky) = (0,0) momentum sector. The legend
differentiates between the correlation functions at lattice positions
(x mod 2,y mod 2), as explained in the main text. We show data
for (a) r = 1: ν = 1/3, N = 7, p = 94; (b) r = −1: ν = 1, N = 9,
p = 112; (c) r = 2: ν = 2/5, N = 8, p = 123; (d) r = −2: ν = 2/3,
N = 12, p = 384; (e) r = 3: ν = 3/7, N = 9, p = 94; and (f) r =
−3: ν = 3/5, N = 9, p = 188.

scaling of the many-body gap with MUC size. However, from
Fig. 9(f), we can see that there seem to be two different rectan-
gular configurations which have distinct scaling behaviors. By
closely examining the energy spectra, this is indeed the case.
Figures 9(g) and 9(h) show the spectra for the two distinct
rectangular configuration geometries present in the sample: the
Lx × Ly = 2 × 9 and Lx × Ly = 1 × 18 cases (taking MUCs
with the largest possible Ly extension). In addition, the density-
density correlation function corresponding to the Lx × Ly =
2 × 9 case is presented in Fig. 10(d). From composite fermion
theory, we expect the degeneracy of the ground state to be 3,
which is indeed what we observe; and the degeneracy is even
clearly visible in the spectra, since the ground states happen to
be in different momentum sectors. Yet, there is a discrepancy
between the energy gaps for the two rectangular configurations,
which is larger than the fluctuations of the previously discussed
data at ν = 1 with ε � 2% deviations from square geometries,
in Fig. 9(d). Nonetheless, any errors from the extrapolation to
the effective continuum limit remain small compared to the
finite-size fluctuations of the gap visible in Fig. 8.

Overall, the ν = 2/3 state has the strongest finite-size
effects, with smaller gaps for configurations with N divisible
by four: In its finite-size scaling, we see clear oscillations of
the many-body gap under addition of pairs of particles. The
next larger system size at N = 14 was found to have a larger

gap in the previous study at fixed flux density [18]. Hence,
the low value at N = 12 should not be taken as an indication
of the vanishing of the gap in the thermodynamic effective
continuum limit. The correlation function for the 12-particle
ν = 2/3 state corresponding to Fig. 9(g) is shown in Fig. 10(d).
Here we observe that charge density wave instabilities may also
play a role.

The |C| = 2, ν = 1 state is the second candidate for a
BIQHE state within the series (5). Here, we consistently find
a nondegenerate ground state in our numerical analysis, as
predicted by composite fermion theory. The many-body gap
in Fig. 8 shows significant finite-size effects, precluding us
from taking a quantitative extrapolation to the thermodynamic
effective continuum limit. However, its magnitude is consis-
tently nonzero for all available system sizes. We further note
that the realizations of the BIQHE in |C| = 2 optical flux
lattices were likewise found to have a significant geometry
dependency of the many-body gaps [77]. Notwithstanding
these finite-size effects, we stress that all geometries allow
for a clear identification of a singly degenerate ground state.
This is unlike the case of the potential ν = 2 BIQHE state in
the lowest |C| = 1 Hofstadter bands, where competing phases
appear to dominate, as we have discussed in Sec. II A 1.

The ν = 2/5 state demonstrates a robust many-body gap
for the states considered. The Hilbert space dimension of
|C| = 2 bosons is comparable to that of |C| = 1 fermions
in Fig. 6 and so the data are limited due to computational
expense. Nevertheless, the remaining filling factor series show
the potential for a robust thermodynamic effective continuum
limit. We note the lack of particle-hole symmetry for the
ν = 2/5 and ν = 3/5 filling factor series, visible in Fig. 8,
unlike for the |C| = 1 fermions in Fig. 6. Additionally, we
observe approximately the predicted composite fermion hier-
archy of gaps for r = −1,−2,−3, as well as for r = 1,2,3.
Unfortunately, finite-size effects dominate extrapolation errors
from q → ∞, and so preclude a clear extrapolation to the
thermodynamic effective continuum limit.

The correlation functions for the six filling factors under
consideration are shown in Fig. 10. Notice the appearance of
four distinct correlation sheets. We differentiate between the
sheets by labeling them corresponding to the |C|2 possible
solutions for (x mod |C|,y mod |C|), where x and y denote
the x- and y-axis lattice positions. Hence, the modulation along
the x and y axes of period |C| leads to the appearance of |C|2
smooth correlation sheets. However, in a finite-size system,
some of these sheets may be related by inversion symmetries
of the type xi ↔ Li − xi whenever Li mod C �= 0. This obser-
vation seems to contradict models of higher Chern number |C|
bands as effective multilayer fractional quantum Hall systems
composed of |C| layers [15,58,78–80]. It is unclear at present
how to reconcile this view with our observations, as the con-
ventional multilayer view allows for no more than |C| distinct
correlation functions. Although it is possible that a suitable ba-
sis could be found in which the number of sheets decreases, this
would likely require a nonlocal transformation mixing several
sites within the unit cell. On the other hand, it is plausible that
a |C|-fold periodicity should appear along each axis, given that
the single-particle wave functions of Harper’s equation show
such behavior [34,58,78,80]. For this single-particle problem
in the Landau gauge, one singles out one of the axes for
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FIG. 11. PES for bosonic states in the |C| = 2 band. We show data for (a) r = 1: ν = 1/3, N = 7, p = 94; (b) r = 2: ν = 2/5, N = 8,
p = 123. In both cases we take NA = �N/2�. The counts of eigenstates from the bottom of the spectra up to the principal entanglement gaps,
in each of the momentum sectors, are (a) 31, 30, 30 (repeated for 21 sectors) and (b) 441, 430, 430, 430 (repeated for 20 sectors), respectively.

momentum conservation, so that |C|-fold oscillations in the
eigenstates occur only in the perpendicular direction. However,
as the problem is gauge invariant, either permutation of the two
axes could be chosen to exhibit these behaviors. Furthermore,
the correlation function should be isotropic in space in the
infinite system. Hence, it appears natural that the correlation
functions display |C|-fold periodicity along both axes.

The state at ν = 1/3 in Fig. 10(a) shows features reminis-
cent of the Laughlin states in the |C| = 1 band, since this state
also has positive flux attachment with one filled band in the
composite fermion spectrum (r = 1). We refer to such states
as primary composite fermion states. The zero-separation
correlation hole is most pronounced here and converges to zero
for all of the correlation sheets; this is observed for all of the
states with positive r in Fig. 10. Furthermore, the isotropic
fluctuations at large distances show signs of settling, although
it is hard to discern the limiting value of the correlation function
in this case. Note that pairs of sheets are related by inversion
symmetry for the specific geometry shown in the figure. This
is a recurring feature for higher Chern bands. In the present
case, we see that the {(0,0),(1,0)} and {(0,1),(1,1)} pairs are
related along the x axis; and the {(0,0),(0,1)} and {(1,0),(1,1)}
pairs are related along the y axis. Due to the large number
of data points and intricacy of these figures, the data are
available, along with this paper, to view interactively online
as Supplemental Material [81].

The correlation functions for the ν = 1 and ν = 2/3 fillings
in Figs. 10(b) and 10(d) are similarly isotropic at large distances
with comparable global maxima. However, the correlation
sheets for these separate cases do not converge to a unique value
at the correlation hole. In contrast, the correlation functions
for the ν = 2/5, ν = 3/7, and ν = 3/5 filling factor series, in
Figs. 10(c), 10(e), and 10(f), show signs of anisotropy with
directional oscillations, which may be indicative of competing
charge density wave instabilities. Note that signs of charge
density waves were also observed for the corresponding r

values (r = −3,2,3) for fermions in |C| = 1 bands, shown
above in Fig. 7.

Next, we examine the particle entanglement spectra of the
examined quantum liquids. In general, the PES for these series

are gapped confirming the existence of a topological phase.
For instance, the PES for the selected states in Fig. 10 have
principal entanglement gaps, �ξ , of (a) 14.25, (b) 1.37, (c)
4.09, (d) 1.12, and (e) 1.85, after tracing out �N/2� particles.
The count of eigenstates below the principal entanglement
gaps for these states, in each of the momentum sectors, are
(a) 31, 30, 30 (repeated for 21 sectors), (b) 53 (repeated for 9
sectors), (c) 441, 430, 430, 430 (repeated for 20 sectors), (d)
5605, 5586, 5601, 5583, 5601, 5583 (repeated for 18 sectors),
(e) 504 (repeated for 21 sectors), and (f) 198 (repeated for
15 sectors), respectively. The spectra corresponding to the
correlation functions in Figs. 10(a) and 10(c) are shown in
Fig. 11. Here, the primary composite fermion ν = 1/3 state in
Fig. 11(a) shows the largest and clearest gap by a significant
margin, as expected. All other states have a smaller principal
entanglement gap higher in the spectrum, as in Fig. 11(b).
Unlike the primary composite fermion states, other states of
the composite fermion series (5) are not characterized by a
generalized exclusion principle [82], so they obey no simple
counting rule for these numbers of quasiparticle states.

Overall, the bosonic series for the second Chern band
presented some of the expected difficulties owing to the
commensurability of several constraints on the geometries;
however, these problems were largely overcome by allowing
for a scaling in q. The only noticeable drawbacks, compared
to the |C| = 1 band, are the reduced number of data points,
particularly for higher particle numbers, and the correspond-
ingly larger uncertainty in the extrapolation as q → ∞. As
emphasized in the previous discussion, although considering
approximately square configurations undoubtedly introduces
error bars in the data, the deviation from square systems is
not directly proportional to the error observed in the effective
continuum limit. Rather, the subsequent error in the effective
continuum limit is principally determined by the specific
variation in the spectra for a given state.

2. Fermionic states

We now extend our analysis to fermions with NN interac-
tions. For |C| > 1, the Hilbert space dimensions for fermionic
states are higher than those of the corresponding bosonic states
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than the data points on the scale of the plot.

due to the smaller filling factors and we thus expect to be able to
compute fewer fermion states due to computational limitations.

Figure 12 shows the data for the gap in the effective
continuum limit for the six filling factors under consideration as
a function of the inverse system size. Because of computational
limitations, substantial data were only obtained for the |r| = 1
series, while we have few data points for the other filling
factors. Again, the r = 1 primary composite fermion state
shows the smallest finite-size effects on the many-body gap,
and we extrapolate the thermodynamic effective continuum
limit to be limN,q→∞(q2�) = 0.46 ± 0.02. Note also that the
magnitude of q2� values is lower than in the corresponding
|C| = 1 fermion plot in Fig. 6. Finite-size effects are noticeable
for all series and the q → ∞ extrapolation errors are much
larger compared to the |C| = 2 boson data. All of the fermion
data were obtained using systems which were within δR � 1%
of square simulation cells. Some of these systems were exactly
square, but no filling fraction yields enough such geometries
to use exact square systems exclusively, throughout the scaling
procedure. More specifically, we have considered 18 different
combinations of particle number and filling factor, with an
average of ∼24 different geometries for each. There are a total
of 433 different exact diagonalization calculations underlying
the data in this section.

Figures 13(a) and 13(b) show the plots for the 6-particle
ν = 2/9 state. This is selected as an example of a state which
has a clean scaling limit. The plots of � and q2� for the
8-particle ν = 1/3 state in Figs. 13(c) and 13(d) show slight
oscillations due to the δR � 1% approximation in square
configurations, similar to the bosonic states in Figs. 9(c) and
9(d). However, these deviations are not as large as in the |C| =
2 bosonic problem case in Fig. 9(f). The effective continuum
limit can be determined with a reasonable error. The spectra
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FIG. 13. [(a)–(d)] Magnitude of the gap for fermionic states in the
|C| = 2 band, as a function of MUC size, q. [(e), (f)] Energy spectra
for the fermionic 8-particle ν = 1/3 state in the |C| = 2 band, at (e)
p = 227 and (f) p = 858. The plots are resolved to n = 4 points per
sector.

in Figs. 13(e) and 13(f) show the origin of the oscillations
in Fig. 13(d). As with the |C| = 2 bosons in Figs. 9(g) and
9(h), we see a competition between two distinct rectangular
geometries. The higher lying bands are more densely packed
for the Lx × Ly = 3 × 8 system in Fig. 13(e) than for the
Lx × Ly = 2 × 12 spectrum in Fig. 13(f).

The ν = 1/3 series obtained for negative flux attachment
(r = −1) has an exceptionally large gap with moderate finite-
size effects and allows for a clear scaling of the many-body
gap to the thermodynamic effective continuum limit. We
extrapolate a limit of limN,q→∞(q�) = 0.65 ± 0.16 in this
case. Note that at this filling factor, for N = 9 we find that some
lattice geometries realize a competing phase withd = 2 instead
of the degeneracy d = 3 predicted by composite fermion
theory. This competing phase appears to be topological, with a
large entanglement gap of �ξ = 6.40 for p = 73 (NA = 4),
for example, and a corresponding eigenstate count of 385

035159-12



STABILITY OF FRACTIONAL CHERN INSULATORS IN … PHYSICAL REVIEW B 97, 035159 (2018)

(0, 0)
(0, 1)

(1, 0)
(1, 1)

0 35 70 105 0
35

70
105

0
0.55
1.1
1.6

0 35 70 105 0
35

70
105

0
0.55
1.1
1.6

x
y

(a)

0 27 54 81 0
27

54
81

0
0.47
0.95
1.4

0 27 54 81 0
27

54
81

0
0.470
0.950
1.4

x
y

(b)

0 36 71 107 0
36

72
108

-0.68
0

0.68
1.4

0 36 71 107 0
36

72
108

-0.68
0

0.68
1.4

x
y

(c)

0 44 88 132 0
44

89
133

-0.64
0

0.64
1.3

0 44 88 132 0
44

89
133

0.64-0
0

0.640
1.3

x
y

(d)

0 39 79 118 0
39

78
117

-0.61
0

0.61
1.2

0 39 79 118 0
39

78
117

-0.61
0

0.61
1.2

x
y

(e)

0 36 73 109 0
37

73
110

0
0.53
1.1
1.6

0 36 73 109 0
37

73
110

0
0.530
1.1
1.6

x
y

(f)

g
(r

)

g
(r

)
g
(r

)

g
(r

)
g
(r

)

g
(r

)

FIG. 14. Density-density correlation functions for fermionic
states in the |C| = 2 band. The plots are shown for the lowest-lying
ground state in the (kx,ky) = (0,0) momentum sector, with sheets
colored as in Fig. 10. We show data for (a) r = 1: ν = 1/5, N = 7,
p = 157; (b) r = −1: ν = 1/3, N = 9, p = 121; (c) r = 2: ν = 2/9,
N = 8, p = 160; (d) r = −2: ν = 2/7, N = 8, p = 313; (e) r = 3:
ν = 3/13, N = 6, p = 265; and (f) r = −3: ν = 3/11, N = 6, p =
272.

(repeated for 27 sectors). As we find only few lattice geometries
at this single system size showing this behavior, we do not
attempt to further characterize this competing state. For the
purposes of the effective continuum limit shown in Fig. 12,
only the geometries with the predicted threefold degeneracy
were taken into account.

The data series for the remaining filling factors in Fig. 12
show few points due to the steep Hilbert space dimension
scaling with particle number for |C| = 2 fermions. However,
these series produce the correct ground-state degeneracies and
the initial data have the potential for a robust gap in the
thermodynamic effective continuum limit.

The correlation functions for the available filling factors are
shown in Fig. 14. We note a few repeating characteristics that
resemble features of states for the |C| = 1 bands in Figs. 4
and 7, as well as the |C| = 2 bosons in Fig. 10. The primary
composite fermion state in Fig. 14(a) shows a pronounced
correlation hole at zero separation and isotropic fluctuations
at large distances. The fluctuations in this case are, however,
larger than those in the corresponding boson plot in Fig. 10(a).
The correlation plots for the flux densities at r = −1 and
r = −2 in Figs. 14(b) and 14(d) again show some degree of
rotational symmetry and isotropy at large distances, whereas
the plots with r = −3,2,3 in Figs. 14(f), 14(c), and 14(e) show
directional oscillations, potentially indicative of an instability

due to charge density wave order. Recall that this was also
observed for the |C| = 2 bosons in Fig. 10 and the |C| = 1
fermions in Fig. 7. The smooth correlation functions are again
visibly split into |C|2 sheets.

The PES for the fermionic series have notably large and
clear gaps overall. For example, the spectra for the states in
Fig. 14 have �ξ values of (a) 13.76, (b) 7.58, (c) 0.82, (d)
6.06, (e) 9.46, and (f) 10.84, after tracing out �N/2� particles.
The corresponding eigenstate counts from the bottom of the
spectra up to the principal entanglement gaps, in each of the
momentum sectors, are (a) 77 (repeated for 35 sectors), (b) 385
(repeated for 27 sectors), (c) 1117, 1110, 1118, 1110 (repeated
for 36 sectors), (d) 445, 440, 446, 440 (repeated for 28 sectors),
(e) 77 (repeated for 26 sectors), and (f) 51 (repeated for 22
sectors), respectively. The PES corresponding to Figs. 14(a)
and 14(f) are shown in Fig. 15. Each of the fermionic states,
with the exception of the PES corresponding to Fig. 14(c), show
PES with large gaps and relatively uniform eigenstate counts
across the momentum sectors. These are features which we
otherwise found to be realized only for the primary composite
fermion state within the bosonic series. For the fermionic series
under examination, the primary composite fermion ν = 1/5
state remains distinguished predominantly by the magnitude
of the gap.

Overall, the |C| = 2 fermion series produces robust results
for the gaps of the states (5). While we have not generated
enough data to ascertain a nonzero gap in the thermodynamic
limit for all members of the family, all observed finite-size
gaps are nonzero, and we find a clear thermodynamic effective
continuum limit for the r = ±1 states. Several high-particle-
number points are omitted but the error bars in the data obtained
are reasonable. The r = 1 series is again the most stable and the
range of q2� limits is lower than in Fig. 6. With the exception
of one competing topological phase at ν = 1/3, the ground-
state degeneracy follows the predictions of composite fermion
theory throughout.

C. FCIs in |C| = 3 bands

For |C| = 3, we find stronger finite-size effects than in
|C| = 2 bands. The Hilbert space dimension of the states is
higher still for given N and thus, fewer high-particle-number
systems are computationally accessible. Coupled with this,
the energy spectra are difficult to analyze. Not only is the
ground-state gap often ambiguous, but the spectra in general
are complex, showing a plethora of competing geometric and
topological physical effects. For these reasons, the analysis of
the |C| = 3 fermionic states is omitted and we focus on the
bosonic systems with contact interactions. Note that, just as
in Sec. II B 2, all the systems in this section are within 1% of
square geometries. Some of the systems were exactly square,
but all filling factors required the use of some approximately
square geometries within the scaling procedure.

Bosonic states

As in Secs. II A 1 and II B 1, we continue our analysis in a
similar fashion and examine the effective continuum limit, fol-
lowed by finite-size scaling to the thermodynamic limit where
possible. Figure 16 shows the effective continuum limiting
behavior for the six filling factors under consideration. As
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FIG. 15. PES for fermionic states in the |C| = 2 band. We show data for (a) r = 1: ν = 1/5, N = 7, p = 157; and (b) r = −3: ν = 3/11,
N = 6, p = 272. In both cases, we take NA = �N/2� = 3. The counts of eigenstates from the bottom of the spectrum up to the principal
entanglement gap, in each of the momentum sectors, are (a) 77 and (b) 51.

expected, due to computational limitations, fewer high-
particle-number states are analyzed, compared to the |C| = 2
boson data in Fig. 8. Nevertheless, a reasonable sample is
obtained, comparable to that of the |C| = 2 fermion data in
Fig. 12. Overall, we have considered 18 different combinations
of particle number and filling factor, with an average of ∼25
different geometries for each. There are a total of 460 different
exact diagonalization calculations underlying the data in this
section.

We find smaller values for the q� limits, when compared
to the lower Chern number (|C| = 2) scaling shown in Fig. 10.
This is a general trend with increasing Chern number, which
we discuss later.

A stable r = 1 series with ν = 1/4 is observed. In this case,
the thermodynamic effective continuum limit is extrapolated
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FIG. 16. Finite-size scaling of the gap to the thermodynamic
effective continuum limit at fixed aspect ratio, for bosonic states in
the |C| = 3 band. The extrapolation to the y axis is shown for the
robust ν = 1/4 and ν = 1/2 states. Squares, circles, and triangles
denote states with |r| = 1,2,3, respectively, where the filled (hollow)
symbols correspond to positive (negative) r .

to be limN,q→∞(q�) = 0.13 ± 0.01. The corresponding
negative flux attached version of this series with ν = 1/2 at
r = −1 is also found to be exceptionally stable, with the gap
exceeding that for ν = 1/4, extrapolated as limN,q→∞(q�) =
0.18 ± 0.07. The error bars due to the effective continuum limit
are significant yet adequate, and more noticeable than those
in Fig. 8.

The remaining data series are insufficient to make any com-
ments on scaling to the thermodynamic effective continuum
limit; however, the predicted ground-state degeneracies from
composite fermion theory are observed at our finite N , and the
finite many-body gaps show the potential for a robust gap in
the thermodynamic effective continuum limit.

Figure 17 shows the plots for the six-particle ν = 3/8 state.
This system is selected as a case of interest, since it has a large
ground-state degeneracy, and we obtain significant error bars
for its effective continuum limit. The plot of the scaling of the
gap in Fig. 17(a) shows the expected reciprocal relation, with
some slight deviations due to the 1% square approximation of
configurations. The plot of q� vs 1/q given in Fig. 17(b) shows
these deviations in more detail. As previously mentioned, the
small-q deviations may be attributed to finite-size effects and
they stabilize as the MUC size is increased.

Four distinct energy spectra for different geometries real-
izing the six-particle ν = 3/8 state are shown in Figs. 17(c),
17(d), 17(e), and 17(f). These cases differ in the realized shape
of the MUC. Notice that the spectra shown in Figs. 17(c)
and 17(d) correspond to the same Lx × Ly = 4 × 4 square
configuration and yield similar spectra. The other two spectra
in Figs. 17(c) and 17(d) correspond to geometries with Lx ×
Ly = 1 × 16 and Lx × Ly = 2 × 8 MUCs, respectively, and
yield qualitatively distinct features. (Again, these geometries
are chosen with the maximum possible value of Ly consistent
with the lattice size.) As a result of such distinct geometries,
the fluctuations of the gap persist up to large values of q

in the scaling shown in Fig. 17(b). Geometric effects such
as this give rise to the significant error bars in Fig. 16. The
entanglement gaps for these systems are shown in Fig. 18.
While the numerical value of �ξ is relatively small, the opening
of the gap confirms the topological nature of this state.
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FIG. 17. [(a), (b)] Magnitude of the gap for bosonic six-particle
ν = 3/8 states in the |C| = 3 band, as a function of MUC size, q.
[(c)–(f)] Energy spectra for the bosonic six-particle ν = 3/8 state in
the |C| = 3 band, at (c) p = 96, (d) p = 120, (e) p = 133, and (f)
p = 161. The plots are resolved to n = 4 points per sector.

Correlation functions for the discussed filling factors are
shown in Fig. 19. As for the bosons in the |C| = 1,2 bands
[Figs. 4(a) and 10(a)], only the primary composite fermion

state with a flux attachment of r = 1 in Fig. 19(a) has a fully
formed correlation hole at zero separation. The correlation
functions are again modulated by the Chern number, giving
rise to |C|2 sheets, which now is visible even in the color plots
of our figures, for example, in Fig. 19(f). In this Chern band,
all of the correlation functions seem to show isotropy in the
large-distance limit. However, small scale features are hard to
discern. As with the |C| = 2 bosons in Fig. 10, for the cases
with negative flux attachment (r < 0) the correlation function
sheets do not converge to the same value at zero separation.
This is shown in Figs. 19(b), 19(d), and 19(f) for this Chern
band, mirroring the behaviors seen in Figs. 10(b), 10(d), and
10(f) for |C| = 2.

The PES for the remaining bosonic series in the |C| = 3
band have small but distinct gaps. Considering the spectra for
the states in Fig. 19, we find �ξ values of (a) 12.84, (b) 1.02,
(c) 1.49, (d) 1.71, (e) 1.41, and (f) 1.92, after tracing out �N/2�
particles. The corresponding eigenstate counts from the bottom
of the spectra up to the principal entanglement gaps, in each
of the momentum sectors, are (a) 51 (repeated for 28 sectors),
(b) 323, 323, 323, 318, 318, 318 (repeated for 18 sectors), (c)
1127, 1112, 1112, 1112 (repeated for 28 sectors), (d) 438, 432,
437, 432 (repeated for 20 sectors), (e) 1364, 1364, 1364, 1356,
1356, 1356 (repeated for 30 sectors), and (f) 46 (repeated for
16 sectors), respectively. In addition, these spectra typically
show several smaller gaps higher in the spectrum. The primary
composite fermion ν = 1/4 state is again the largest and most
distinct, with a uniform count of eigenstates below the principal
entanglement gap, across the momentum spectrum.

III. THERMODYNAMIC LIMITS AND SCALING OF THE
EFFECTIVE CONTINUUM LIMIT WITH CHERN NUMBER

In this section, we consolidate our analyses of the |C| =
1,2,3 bands in order to comment on the behavior of the
thermodynamic limits that we could extrapolate from the
effective continuum limits at finite system sizes.

Extrapolated thermodynamic limits for bosons are pre-
sented in Table I(a). One overarching characteristic of the
plots in Figs. 2, 8, and 16 is the robust r = 1 series. The
corresponding gaps are extracted and shown in Fig. 20(a). Up
to the |C| = 3 system, we find that limq→∞(q�) for N = 6
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FIG. 18. PES for the bosonic six-particle ν = 3/8 state in the |C| = 3 band with NA = �N/2� = 3, at (a) p = 120 and (b) p = 133. The
count of eigenstates from the bottom of the spectrum up to the principal entanglement gap is 46 per momentum sector.
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FIG. 19. Density-density correlation functions for bosonic states
in the |C| = 3 band. The plots are shown for the lowest-lying
ground state in the (kx,ky) = (0,0) momentum sector. The leg-
end differentiates between correlation functions at lattice positions
(x mod 3,y mod 3), as explained in the main text. We show data for
(a) r = 1: ν = 1/4, N = 7, p = 114; (b) r = −1: ν = 1/2, N = 9,
p = 113; (c) r = 2: ν = 2/7, N = 8, p = 114; (d) r = −2: ν = 2/5,
N = 8, p = 107; (e) r = 3: ν = 3/10, N = 9, p = 447; and (f)
r = −3: ν = 3/8, N = 6, p = 96.

scales approximately inversely with Chern number, as seen
in Fig. 20(b). In addition, we show that this (approximate)
reciprocal relation does not hold precisely for the |C| = 4,5
bands. However, we caution that our data are very limited in
those cases.

We also highlight again the stable r = −1 series with filling
ν = 1/2 in |C| = 3 bands for which the gap is extrapolated to
the thermodynamic effective continuum limit in Fig. 16. Since
the larger N systems should intuitively be given more weight
when taking the limit, this value is perhaps an overestimate
of the true thermodynamic effective continuum limit. This is
captured by the larger error bars.

The thermodynamic effective continuum limits for the gaps
of fermionic states are summarized in Table I(b). As for bosons,
we find that the gap decreases with Chern number. However,
due to computational expense, we did not consider enough
Chern numbers to postulate a scaling relation. As seen before
in Fig. 6, the ν = 1/3 and ν = 2/3 series yield the same
thermodynamic effective continuum limit due to particle-hole
symmetry. For the ν = 1/3 series in the |C| = 2 band, shown in
Fig. 6, we note intuitively that the extrapolated limit is perhaps
an underestimate since larger N systems should be given
greater weight. Again, this is accounted for in the uncertainty.

TABLE I. Summary of states with (effective) continuum limits
that could be extrapolated to the thermodynamic limit, given to two
decimal places, for (a) bosons and (b) fermions. The uncertainty
quoted for the limit is the asymptotic standard error from a linear
regression of q� against 1/N .

(a) Bosons
|C| r ν limN,q→∞(q�)

1 1 1/2 0.64 ± 0.01
2 1 1/3 0.27 ± 0.004
3 1 1/4 0.13 ± 0.01

−1 1/2 0.18 ± 0.07

(b) Fermions
|C| r ν limN,q→∞(q2�)

1 1 1/3 2.56 ± 0.02
−2 2/3 2.56 ± 0.02

2 1 1/5 0.46 ± 0.02
−1 1/3 0.65 ± 0.16

Our studies of the density-density correlation functions
for the higher Chern bands show some common features
for the states with successful thermodynamic extrapolations.
Compared to the other states, the correlation functions cor-
responding to the successfully extrapolated series, shown in
Figs. 4(a), 10(a), 19(a), and 19(b) for bosons and in Figs. 7(a),
7(c), 14(a), and 14(b) for fermions are characterized by smaller
oscillations in the large distance limit and are more likely to
be fully isotropic. This is consistent with small correlation
lengths for these cases, as plausibly expected for states with
small composite fermion filling factors |r|. In addition, the
correlation functions of higher |r| values also show some of
the features expected for quantum Hall liquids such as a small-
distance correlation hole. Most series for which we could not
find a satisfactory thermodynamic (effective) continuum limit
show visible oscillations throughout the simulation cell, which
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FIG. 20. (a) Finite-size scaling of the gap to the thermodynamic
(effective) continuum limit at fixed aspect ratio, for robust r = 1
bosonic states. The filling factors are ν = 1/2,1/3,1/4 for Chern numbers
|C| = 1,2,3, respectively. (b) Finite-size scaling of the (effective)
continuum limit of the gap at fixed aspect ratio, against Chern number,
for robust r = 1 bosonic states with N = 6 particles. In both cases,
all of the error bars are smaller than the data points on the scale of the
plots.
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may be either indications of finite-size effects or competing
charge density wave orders.

All of the correlation functions for higher Chern bands show
a characteristic modulation of the magnitude of correlations as
a function ofx andy positions modulo the Chern number and so
give the appearance of |C|2 correlation sheets. This modulation
may also explain the continued sensitivity of the states to the
geometry of the system, as simulation cell sizes which are
multiples of the Chern number, i.e., geometries Nx mod |C| =
0 and Ny mod |C| = 0, are special but are generally difficult
to realize in conjunction with all other constraints.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have quantitatively analyzed the composite
fermion series of states for higher Chern number bands in
the Harper-Hofstadter model [14,16,18]. Exact diagonalization
calculations of these fractional quantum Hall liquids in the
Hofstadter model are challenging, owing to numerous Dio-
phantine constraints relating filling factor, flux density, and
lattice geometry. We exploit the scaling of the energy scales
in the size of the MUC, first observed by Bauer et al. [49], to
resolve some of these commensuration issues. We are thus able
to extract finite-size data exclusively for nearly square systems,
leading to more reliable determination of the many-body gaps
as compared to finite-size scaling at fixed flux density.

We confirm that the prediction of composite fermion theory
for the ground-state degeneracy is correct at all filling factors
that we examined, with few exceptions due to competing
phases. Several states were shown to have stable gaps in the
thermodynamic (effective) continuum limit. Among these—as
expected—the primary composite fermion states with filling
factor ν = 1/(k|C| + 1) are the most robust, and we find that
they have an (effective) continuum limit that is largely inde-
pendent of particle number. We found several other states that
allow for a reliable finite-size scaling of the gap, as summarized
in Table I. However, for many candidate phases predicted by
composite fermion theory, we have found that scaling toward
the (effective) continuum limit does not sufficiently alleviate
finite-size effects to draw firm conclusions about their stability
in the thermodynamic (effective) continuum limit. In part, this
is due to the system-size limitations used in our study. The
topological character of the different target phases has been
clearly shown through the use of entanglement spectroscopy,
which reveals the existence of entanglement gaps.

Our data also shed light on the fate of two potential BIQHE
states in the Hofstadter model. A first candidate arises in |C| =
1 bands at filling ν = 2, for r = −2 filled composite fermion
levels. However, this state is clearly not realized within the
lowest-band-projected Harper-Hofstadter model examined in
our paper, as we do not find the correct ground-state degeneracy
of one for all system sizes. We therefore conjecture that the
recently reported ν = 2 state of hardcore bosons [46] likely
requires filling of (at least) the lowest two Landau levels, which
would bring it in line with other realizations of the BIQHE
that require two flavors of bosons. The second candidate is the
ν = 1 state in C = 2 bands. Here, we find conclusively a large
gap above a nondegenerate ground state for all system sizes.
While the magnitude of the gap shows important variations
with system size even after taking the effective continuum

limit, our data are consistent with the existence of a gapped
phase in the thermodynamic effective continuum limit, subject
to the known generic caveats [83].

In addition to spectral properties, we have studied the
two-particle correlation functions of the Hofstadter model,
revealing their unexpected structure which resembles a total
of |C|2 continuous sheets. This result is in disagreement with
suggestions that Chern number C bands can be regarded as
|C|-layer quantum Hall systems. In this multilayer picture, we
would only expect |C| distinct correlation functions, so we
hope that our results will stimulate further research that will
clarify the origin of this discrepancy.

We have shown that approximately square geometries
stabilize some of the expected isotropic quantum liquid phases
predicted by composite fermion theory. In general, we find
that variations of the gap due to a small change in aspect
ratio are smaller than the finite-size effects but still remain
significant. Hence, the sensitivity of the problem to details
of the geometry seems to indicate that competing phases are
likely to exist. Indeed, in addition to the isotropic quantum Hall
liquids discussed in our work, several candidates for symmetry
broken phases [63,64] or phases combining a broken symmetry
and topological response [19] have recently been proposed.
We hope that the rich interplay of these competing phases will
stimulate further active research in the physics of fractional
topological insulators in Hofstadter models. Future research
should focus on experimental probes for these regimes, as well
as on specific realizations that can favor the various candidate
phases, for example, via the effect of longer range interactions
or anisotropy.
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APPENDIX A: PERIODIC LANDAU GAUGE VECTOR
POTENTIAL FOR RECTANGULAR LATTICES

Consider a general rectangular lattice with lx = lx êx and
ly = ly êy . In this basis, the absolute position vector may be
written as

r =
(

x

y

)
= ξx lx + ξy ly (A1)

with ξx = x/lx and ξy = y/ly . Following from Hasegawa and
Kohmoto [56], we know that the periodic Landau gauge phase
is given as

χ (r) = −SB�ξx�ξy, (A2)
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where S = |lx × ly | = lx ly . Hence, the phase may be written
as

χ (r) = −Blxy

⌊
x

lx

⌋
. (A3)

Ultimately, we would like to calculate the periodic Landau
gauge vector potential for rectangular lattices A(p,rect), which
may be expressed in terms of the Landau gauge vector potential
A(L,rect) for rectangular lattices as

A(p,rect) = A(L,rect) + ∇χ (r). (A4)

From Eq. (A3), we may write

∇χ (r) = −B

⎛
⎜⎝

y
∑n=∞

n=−∞ δ(x/lx − n + ε)

�x/lx�
0

⎞
⎟⎠, (A5)

where ε is an infinitesimal, added to avoid an ambiguity of
the phase factor at lattice site positions. Now, given that the
Landau gauge vector potential for rectangular lattices is

A(L,rect) = SB

2π
ξxFy, (A6)

where

Fy ≡ 2π

(
êz × lx

(lx × ly) · êz

)
= 2π

ly
ey, (A7)

we may substitute Eqs. (A6) and (A5) into Eq. (A4), which
yields

A(p,rect) = B

⎛
⎜⎝

−y
∑n=∞

n=−∞ δ(x/lx − n + ε)

x − �x/lx�
0

⎞
⎟⎠. (A8)

Note that this potential reproduces the same discrete imple-
mentation of the finite-size Harper-Hofstadter Hamiltonian (1),
as would be obtained by applying the magnetic translation
algebra with a basis of {TM (lx),TM (ly)} (see, e.g., the supple-
mentary material of Ref. [18]).

APPENDIX B: PERIODIC LANDAU GAUGE
TRANSFORMATION IN FOURIER SPACE

As a gauge transform of the electromagnetic vector potential
A(r) → A(r) + ∇χ (r) acts multiplicatively on the wave func-
tion in position space via ψ(r) → exp[iχ (r)]ψ(r), its action
in reciprocal space takes the form of a convolution with the
gauge function. Let us therefore consider the Fourier transform
of the gauge transforms between a periodic Landau gauge with
respect to the standard Landau gauge to establish how momenta
are transformed.

Consider a system with a total of NxNy sites, q = lx ly sites
in each MUC, and LxLy MUCs in the system. Let the system
be pierced with a perpendicular magnetic field B = 2πnφ êz,
where the lattice constant is set to one and sites in the MUC
are labeled with a sublattice index α = 0, . . . ,(q − 1). In
the Landau gauge, the MUC is naturally q × 1. To realize
this gauge in a finite-size geometry, we require Nx mod q =
0, and hence we obtain momenta k(L)

x = 2πn(L)/Nx , with
n(L) = 0, . . . ,Nx/q − 1 and k(L)

y = 2πm(L)/Ny , with m(L) = 0,

. . . ,Ny . By contrast, the set of allowed momentum vectors in
the periodic gauge are

{k(p)} =
{(

2π

Nx

n,
2π

Ny

m

)}
, (B1)

with momentum indices n = 0, . . . ,Lx − 1 and m =
0, . . . ,Ly − 1. The resulting Brillouin zones (BZ) have
different shapes, with the BZ for the Landau gauge spanning
a narrow tall rectangle k ∈ [−π/q,π/q] × [−π,π ], whereas
the periodic gauge yields a wider and shorter BZ geometry.

The absolute position vector rstα = Rst + ρα may be writ-
ten as

rstα = slx êx + t ly êy + ρα, (B2)

with spatial indices s = 0, . . . ,Lx − 1 and t = 0, . . . ,Ly − 1,
and corresponding sublattice vectors

ρα =
(

α mod lx
�α/lx�

)
. (B3)

The magnetic field may be written as B = ∇ × A, with a vector
potential in the Landau gauge

A(L) = Bxêy (B4)

that is independent of y. Other vector potentials may be
obtained via a gauge transformation

A → A + ∇χ (r). (B5)

To ensure gauge periodicity, we take

χ (r) = −B�x�y, (B6)

which, with an arbitrary rectangular lattice basis {lx êx , ly êy},
becomes

χ (r) = −Blx�x/lx�y, (B7)

as discussed by Hasegawa and Kohmoto [56]. We are interested
in transforming to some arbitrary periodic Landau gauge, such
that

ψ (p) = Gαψ (L), (B8)

where the gauge factor Gα ≡ eiχ . In Fourier space, this may
be written as

ψ̂ (p) = Ĝα ∗ ψ̂ (L,p), (B9)

where ∗ denotes the convolution, and ψ̂ (L,p) indicates the wave
function in the original Landau gauge Fourier transformed with
respect to the BZ of the periodic gauge. Specifically, the Fourier
transform with respect to the MUC in periodic gauge is defined
as

f̂ (x,y) =
Lx−1∑
s=0

Ly−1∑
t=0

e−ik(p)·rstα f (x,y), (B10)

where f (x,y) is an arbitrary function of x and y positions.
The corresponding Fourier transform of the Landau gauge
wave function in Eq. (B9) is of a general form, with functions
given by solutions to the Harper equation. However, the Fourier
transform of the gauge factor is analytically calculable, and we
proceed by evaluating it here. Noting that⌊

slx + α mod lx

lx

⌋
= s, (B11)
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FIG. 21. Finite-size scaling of the gap at fixed flux density. We show the finite-size gaps for flux densities nφ = p/q with increasing values
of denominator q given by the color scale as a function of the inverse system size for (a) the bosonic ν = 1/2 states and (b) the fermionic
ν = 1/3 states, in the |C| = 1 band. The extrapolations to the thermodynamic limit excludes outliers at small system sizes, i.e., excluding
N = 4 in panel (a) and N = 4,5,6 in panel (b). The corresponding plots for the thermodynamic extrapolated gaps, for each finite q, are inset.

and taking out constant factors, we find that

Ĝα = e−ik(p)·ρα

∑
s,t

(e−iBq)st
(
e−i(k(p)

x lx+Blx�α/lx�)
)s(

e−ik(p)
y ly

)t
.

(B12)

Since B = 2πnφ = 2πp/q, ∀p ∈ Z, we make the simplifica-
tion

(e−iBq)st = 1, (B13)

which allows us to separate the summation, such that

Ĝα = e−ik(p)·ρα

Lx−1∑
s=0

(
e−i(k(p)

x lx+Blx�α/lx�)
)s

Ly−1∑
t=0

(
e−ik(p)

y ly
)t

.

(B14)

Since k
(p)
y = 2πm/lyLy for m = 0, . . . ,Ly − 1, we deduce

that
Ly−1∑
t=0

(
e−ik(p)

y ly
)t = Lyδk

(p)
y ,0. (B15)

Hence, our expression reduces to

Ĝα(k(p)) = Lye
−ik(p)

x (α mod lx )
Lx−1∑
s=0

e
−i 2π

ly
(lyn+pLx�α/lx�) s

Lx δ
k

(p)
y ,0.

(B16)

Furthermore, since the total number sites in the x direction is
necessarily a multiple of q, it follows that Lx ∝ ly in all cases.
This allows us to make the simplification

Ĝα(k(p)) = LxLy exp
{−ik(p)

x (α mod lx)
}

× δ
k

(p)
x Nx/2π+pκ�α/lx�,0δk

(p)
y ,0, (B17)

where κ is the constant of proportionality such that Lx = κly .
Hence, the gauge factor may be explicitly expressed as a
function of periodic gauge momentum in the x direction. The
ky dependence in ψ̂ (p) comes solely from ψ̂ (L,p). Consequently,
the ky momentum in the periodic gauge equals the original

ky momentum in the Landau gauge modulo 2π/ly , while the
transformation on the kx dependence is nontrivial as ensues
from Eq. (B17).

APPENDIX C: SCALING TO THE CONTINUUM LIMIT
AT FIXED FLUX DENSITY

To cross-validate our scaling to the effective continuum at
fixed aspect ratio, we additionally perform scaling for select
cases at fixed flux density, nφ .

In this procedure, we select a set of q values approximately
geometrically distributed with common ratio 2, in the range
10 � q � 103. This provides a spread of q values which
reflects the distribution used in the scaling at fixed aspect ratio.3

q defines the number of sites in each MUC, lx ly , which we
factorize into all distinct pairs of factors. For each q value, we
study N values in the range Nmin � N � Nmax, where Nmin

and Nmax are the minimum and maximum number of particles
studied in the fixed aspect ratio scaling. Here N/ν defines the
total number of MUCs in the system, LxLy , which we also
factorize into all distinct pairs of factors. At this point, for each
q,N configuration, we select the (lx,ly) and (Lx,Ly) pairs so
as to minimize the deviation from a square system, ε. This
minimization is performed only as a subsidiary constraint to
improve the comparison with the fixed aspect ratio scaling in
the bulk of the paper. In practice, ε may be as high as 50% for
this scaling procedure.

To illustrate the mutual consistency of the scaling at
fixed flux density (limq,N→∞) and the scaling at fixed
aspect ratio (limN,q→∞), we provide data on the r = 1
Laughlin states, for both bosons [Fig. 21(a)] and fermions
[Fig. 21(b)] in a |C| = 1 band. Here, we find extrapolated val-
ues of limq,N→∞(q�) = 0.62 ± (7.0 × 10−4) for bosons and

3Furthermore, q values with multiple factors are preferred during
the selection process, and prime q immediately rejected, so as to
maximize the chances of approximately square configurations for
comparison.
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FIG. 22. Finite-size scaling of the gap in the C = 2 band for (a) bosonic states, where squares, circles, and triangles denote states with {r =
−3,N = 9; r = 2,N = 8; r = 3,N = 6}, respectively; and (b) fermionic states with {r = −1,N = 6}. The filled (hollow) symbols correspond
to scaling with fixed aspect ratio (flux density). The linear trend lines are shown for the scaling with fixed aspect ratio.

limq,N→∞(q2�) = 2.56 ± (7.2 × 10−3) for fermions, which
is in close agreement with Sec. II A.

We also examine the scaling at finite flux density for more
fragile states in higher Chern number bands. Generally in these
cases, we find that the effective continuum limit at constant
aspect ratio provides a much smoother extrapolation that
minimizes finite-size effects. Examples are shown in Fig. 22.

APPENDIX D: DERIVATION OF
THE CORRELATION FUNCTION

The two-particle correlation function may be written as the
expectation value of the density operator, ρ, of a particle at site
i with the density operator of a particle at site j :

〈ρiρj 〉 = 〈c†i cic
†
j cj 〉 , (D1)

where c†, c are the creation and annihilation operators, re-
spectively. We may normal order the expression such that, for
bosons or fermions,

〈:ρiρj :〉 = 〈c†i c†j cj ci + c
†
i ciδij 〉 . (D2)

From here, we substitute in the expression for the Fourier
transform with respect to absolute position

cr = 1√
Nc

∑
n,k

un,α(k)eik·rcn,k, (D3)

where Nc is the number of MUCs, n is the band index, α is
the sublattice index corresponding to position r, and k is the
momentum. This substitution yields

〈:ρiρj :〉 = 1

N2
c

∑
{n},{k}

u∗
n1,αi

(k1)u∗
n2,αj

(k2)un3,αj
(k3)un4,αi

(k4)

× ei(−k1·ri−k2·rj +k3·rj +k4·ri )
〈
c
†
n1,k1

c
†
n2,k2

cn3,k3cn4,k4

〉
+ 1

Nc

∑
n1,n4
k1,k4

u∗
n1,αi

(k1)un4,αi
(k4)

× ei(−k1·ri+k4·ri )
〈
c
†
n1,k1

cn4,k4

〉
δij . (D4)

Introducing the single-particle wave function, φn,k(ri) =
un,αi

(k)eik·ri , this expression reduces to

〈:ρiρj :〉 = 1

N2
c

∑
{n},{k}

φ∗
n1,k1

(ri)φ
∗
n2,k2

(rj )φn3,k3 (rj )

×φn4,k4 (ri)
〈
c
†
n1,k1

c
†
n2,k2

cn3,k3cn4,k4

〉
+ 1

Nc

∑
n1,n4
k1,k4

φ∗
n1,k1

(ri)φn4,k4 (ri)
〈
c
†
n1,k1

cn4,k4

〉
︸ ︷︷ ︸

∝δk1 ,k4

δij .

(D5)

Because of the proportionality relation of the density expec-
tation value, the last sum reduces to a sum over a single
momentum.

APPENDIX E: ACCURACY OF CORRELATION
FUNCTIONS

In order to verify the accuracy of the density-density correla-
tion functions used in this paper, we compare the correlation for
the robust six-particle ν = 1/2 state with the exact continuum
result for a torus, shown in Fig. 23. The derivation of the lattice
correlation function in terms of single-particle eigenstates is
shown in Appendix D, and the exact form of the correlation
function on the continuum torus is discussed in many sources,
for example, by Yoshioka et al. [84]. Note the slight deviation
of the lattice result from the exact solution. Figures 23(a) and
23(c) show plots of the density-density correlation function
with p = 71 and p = 971, respectively, whereas Figs. 23(b)
and 23(d) show the corresponding variance between the con-
tinuum and lattice results. We observe an agreement at the
zero-separation correlation hole which oscillates with distance
[note the small scale of the variance in Figs. 23(b) and 23(d)].
Because of the lack of scaling with radius, this discrepancy is
attributed to computational imprecision of the single-particle
eigenvectors, which we obtain with standard diagonalization
routines of the LAPACK library.

The same analysis is performed for the robust eight-particle
state in the same Laughlin series. The asymmetry of the lattice
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FIG. 23. [(a), (c)] Two-particle correlation function for the bosonic six-particle ν = 1/2 (Laughlin) state in the |C| = 1 band and (kx,ky) =
(0,0) momentum sector, with (a) p = 74 and (c) p = 971. The lattice result is additionally projected to the base, and the exact continuum
solution is plotted for comparison. [(b), (d)] Variance between the continuum and lattice results with (b) p = 74 and (d) p = 971. The average
is taken with respect to the points enclosed in origin-centric annuli of width 1.5a, where a is the lattice spacing.

results as well as their deviation from the continuum is shown
in Fig. 24. Since the continuum torus correlation function
is symmetric by construction, we confirm that the lattice

results obey the fundamental symmetry also, up to the scale
of Fig. 24(a). In Fig. 24(b), we explicitly plot the asymmetry
in the lattice results (note the small scale of the plot). The fact
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FIG. 24. (a) Absolute deviation from the exact continuum torus solution and (b) asymmetry in the two-particle correlation function for the
bosonic eight-particle ν = 1/2 (Laughlin) state in the |C| = 1 band and (kx,ky) = (0,0) momentum sector, with Lx = Ly = 4. A y = 0 cross
section is rescaled such that x̃ = x/Nx .
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that we do not find a monotonic behavior of the asymmetry
with p, supporting the view that the deviations are due to the
numerical accuracy of the single-particle eigenstates.

APPENDIX F: ERROR ANALYSIS

In order to obtain the thermodynamic (effective) continuum
limit, we linearly extrapolated the data for the q(2)� vs 1/q and
q(2)� vs 1/N plots. To determine this scaling, we rejected low-

q/-N outliers and focused only on high-q/-N data points, since
they are closer to the mode and also the limit of the distribution.
As illustrated in the above discussion, occasionally data for the
limit is not precise. We define error bars relative to the linear
trend line. For most cases, this is the asymptotic standard error
for the y-intercept fit parameter of a standard linear regression
in N−1. However, for |C| > 1 in the q → ∞ limit, the error
bars were read off on a case-by-case basis, by inspection, since
they were often asymmetric and larger than the asymptotic
standard error estimate.
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