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Magnetic diffuse scattering in artificial kagome spin ice
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The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering
provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally
active magnetic moments. From the diffuse signal of soft x-ray resonant magnetic scattering, we have measured
magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On
comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we
conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment
fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence
of quasi-pinch-points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch-points bear
similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually
evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with
soft x rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.
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I. INTRODUCTION

Artificial kagome spin ice is a well-known geometrically
frustrated two-dimensional magnetic system [1,2]. It consists
of elongated ferromagnetic nanomagnets placed on the nodes
of a kagome lattice, or equivalently on the bonds of the
hexagonal lattice (see Fig. 1), and coupled via their dipolar
magnetic fields. Most of the experimental studies on artificial
spin ice have been performed on static systems [3–5] or
systems with slow-magnetization dynamics [6] using imaging
techniques such as magnetic force microscopy (MFM) and
x-ray photoemission electron microscopy (PEEM). In recent
years, however, thermally active artificial spin systems have
gained considerable interest [7] and provided a successful
route to reach the low-energy magnetic states of artificial
spin ice [6,8–11]. Additionally, analysis of the thermal
behavior of nanomagnetic systems is particularly important for
understanding the limitations of future spintronic devices [12].
However, as the dynamics of artificial spin systems gets
faster, observations using traditional microscopy techniques
become limited by their temporal resolution (approximately
1 s for PEEM), so that the magnetic correlations of the
systems with rapidly fluctuating moments cannot be probed.
Therefore, complementary techniques are needed to study
magnetic correlations in systems with faster fluctuation time
scales in order to gain information about the magnetic phases
over a broad temperature range. This is particularly of interest
for thermally induced magnetization dynamics [6,13], order-
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disorder transitions [14,15], and spin-wave excitations in
magnonic crystals [12,16].

Here we show that soft x-ray resonant magnetic scattering
(SXRMS) is a highly sensitive momentum-resolved technique
for studying magnetic correlations in mesoscopic systems
with fast magnetization dynamics. Field-driven studies of
athermal systems using this technique have already been
reported, with measurements of the x-ray magnetic circular
dichroism (XMCD) signals at the Bragg peaks [17–19]. Such
measurements can directly give information about the ordering
in the sample or the net magnetic moment. However, systems
without long-range order, but rather short-range correlations,
are characterized by diffuse scattering with a relatively weak
XMCD signal.

In the present work, we focus our attention on a highly
dynamic regime of thermally active artificial kagome spin ice.
The magnetic correlations in this regime have not yet been
explored due to difficulties in capturing the weak magnetic
diffuse signal, which we overcome by masking out the Bragg
peaks. Comparing experimental scattering patterns with the
patterns calculated from Monte Carlo simulations, we observe
the emergence of quasi-pinch-points in the kagome ice I phase
of artificial kagome spin ice, and explain their relation to the
pinch-point singularities in both in-field [20,21] and zero-field
spin ice pyrochlores [22]. While we currently cannot access
the kagome ice II phase experimentally, we develop a the-
oretical understanding of how genuine pinch points in the
kagome ice II phase emerge smoothly from precursors or
quasi-pinch-points in the structure factor of the kagome ice
I phase by virtue of breaking the Z2 symmetry associated with
magnetic charge order [14,15,23]. These sharp pinch points in
the magnetic structure factor [23] are characteristic features of
the magnetic Coulomb phase.
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FIG. 1. (a) Scanning electron microscopy image of our artificial
kagome spin ice sample with sub-70-nm nanomagnets. A magnified
image of a single kagome ring is given in the inset with the lattice
and nanomagnet dimensions in nm. (b) Schematic illustration of
the nanomagnets on the kagome lattice with the structural unit cell
marked in pink, which belongs to the p6mm plane group. a1,a2, and
a3 are the structural lattice unit vectors. Thin gray lines represent
mirror planes and serve as a guide for the eye. The experimental
scattering plane is parallel to the crystallographic direction 〈12̄1〉
indicated by the black arrow. There are three nanomagnets per unit
cell, indicated by the three nanomagnets shaded in black.

Our experimental data resolving x-ray magnetic diffuse
scattering in highly dynamic artificial kagome spin ice confirm
the existence of kagome ice I phase correlations and thus
provide convincing evidence for the picture of a classical
spin liquid that thermally samples the large manifold of
near-degenerate spin-ice states.

II. METHODS

A. Sample preparation

Our 2 × 2 mm2 arrays of nanomagnets, that are superpara-
magnetic at room temperature, were produced using electron
beam lithography. The nanomagnets have an elongated shape

with a length of 62 nm and a width of 24 nm, and are placed
on the nodes of a two-dimensional kagome lattice with lattice
vectors of length 170 nm [see inset of Fig. 1(a)]. A 70-nm-thick
polymethylmethacrylate (PMMA) layer was spin coated on
a Si (100) substrate. The patterns were exposed in the resist
using a Vistec EBPG electron beam writer operated at 100 keV
accelerating voltage. After development, a 5-nm-thick Permal-
loy (Ni80Fe20) film was deposited by thermal evaporation and
capped with about 3 nm of Al to prevent oxidation. The
remaining resist with unwanted metallic material was removed
in acetone by ultrasound-assisted lift-off.

B. Monte Carlo simulations

To model the behavior of artificial kagome spin ice, the
Monte Carlo method was used. We have generated magnetic
moment configurations for a kagome lattice with Ising degrees
of freedom by thermal Monte Carlo sampling of an array of
24 × 24 unit cells using the implementation of Möller and
Moessner [14,24]. Each nanomagnet is modeled as a needle
dipole with uniform magnetic moment density �μ/l along the
length l of the nanomagnet [24], and we use the value of
l/a = 0.6 corresponding to our sample geometry throughout
this paper, where a is the distance between the vertices of
the kagome lattice or the bond length of the parent hexagonal
lattice. The interaction between such needle dipoles is equal to
the magnetostatic energy of pairs of magnetic charges ±q at
the tips of each dipole, and the value of the Ising spin defines
which end hosts the positive charge. This gives rise to an
effective description of magnetic configurations in the system
in terms of the total magnetic charge Q at a vertex, i.e., the sum
of charges at the three dipole tips closest to it (a detailed picture
of the energetics in the system can be obtained in a multipole
expansion of the available charge configurations) [14]. Using
this representation, the paramagnetic phase is fully disordered
allowing all possible random configurations with Q = ±q or
Q = ±3q at each vertex. In the kagome ice I phase, the ice
rule (“two in, one out” or vice versa at each vertex) enforces
Q = ±q, with an exponentially suppressed population of Q =
±3q excitations upon lowering the temperature. The kagome
ice II phase is fully ordered in terms of charges but still carries
a macroscopic degeneracy in terms of spin configurations,
with a finite entropy per magnetic moment [14]. Finally,
the (sixfold-degenerate) ground-state configuration forms a
crystal of “loops” of spins with long-range order (LRO) in
both charge and moment ordering. For more details about
these phases see Ref. [14]. The sampled configurations of the
magnetic moments from the kagome ice I and paramagnetic
phases are then used to numerically simulate the SXRMS
patterns that are compared with the experimental results.

C. Soft x-ray resonant magnetic diffuse scattering

SXRMS experiments were performed using the RESOXS
chamber [25] at the SIM beamline [26] of the Swiss Light
Source, Paul Scherrer Institute. Experimental scattering pat-
terns were measured at an x-ray energy of 708 eV correspond-
ing to the Fe L3 edge and at 690 eV (below the edge) to verify
that the scattering signal at resonance is of magnetic origin. The
off-specular reflection geometry (Fig. 2) ensures sensitivity to
the in-plane magnetic moments of the sample. The angle of
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FIG. 2. Experimental geometry for x-ray resonant magnetic
scattering with circularly polarized C+ synchrotron x rays. ki,θi are
the incident x-ray wave vector and angle, and kf,θf are the final wave
vector and angle. qz and qx are the momentum transfers along the
z and x directions, respectively. The orientation of the nanomagnets
relative to the scattering plane is shown schematically in the inset.

incidence θi = 8◦ is kept constant throughout the experiment.
The diffraction patterns were acquired for four seconds with
a Princeton Instruments PME charge-coupled device (CCD)
camera with 1340 × 1300 pixels (20 × 20 μm2 pixel size).

Using the CCD camera, an extended fraction of reciprocal
space can be recorded simultaneously [18], which is ideally
suited for capturing diffuse scattering. However, the CCD
detectors used for soft x rays have a lower dynamic range
compared to the CMOS hybrid photon counting detectors
developed for hard x rays that are used for detecting structural
diffuse scattering [27]. As a result of the low dynamic range,
it is much harder to capture diffuse scattering in the soft
x-ray scattering experiments, since the diffuse intensity is
usually three orders of magnitude lower than the Bragg peak
intensity. In addition, the magnetic scattering contribution is
usually about two to three orders of magnitude lower than the
charge scattering contribution. This results in five to six orders
of magnitude difference in intensity between the magnetic
diffuse and the structural Bragg scattering, which is beyond the
dynamic range of the standard CCD detectors. To separate the
two, we therefore placed a custom-made arc-shaped aluminum
mask in front of the CCD detector to block the high-intensity
Bragg peaks and the specular reflection. Thus features in
diffuse magnetic scattering with intensities ≈10−6 to 10−5 of
the Bragg peak intensities could be resolved. This simple
technique opens the possibility to investigate magnetic diffuse
scattering, and the associated magnetic correlations, that might
otherwise be overlooked in such experiments.

In order to numerically simulate the two-dimensional
SXRMS patterns, we make use of kinematic scattering theory
as described in Refs. [28] and [29]. For more details about
the numerical implementation of this theory see Ref. [30]
and, in particular, our previous work Ref. [18]. To directly
compare the simulated pattern with the experiment, only the
magnetic contribution to the scattering signal was calculated.
We assume that the nanomagnets are homogeneous Permalloy
particles supporting a single magnetic domain, so we obtain
three distinct form factors, one for magnets on each of the three
sublattices in the unit cell of the kagome lattice. Improving on
the method in Ref. [18], in this work we also include the

scattering geometry and the reflectivity of the sample, which
is important to reproduce the shape of the scattering pattern
obtained on the 2D detector and the intensity decay in the
qx direction. Taking this into account, we consider a plane
wave scattered by the sample and collected at each detector
pixel with a momentum transfer q = kf − ki. The simulated
scattering pattern is then corrected for the Fresnel reflectivity
from a flat interface, approximated as ( qc

2qx
)4 at high angles [31],

where qx is the wave vector transfer in the scattering plane and
qc is the wave vector transfer at the critical angle.

III. RESULTS AND DISCUSSION

A. Magnetic correlations in highly dynamic
artificial kagome spin ice

In order to investigate the magnetic correlations in the
dynamic regime, our samples are designed to achieve an
appropriate balance between the magnetic anisotropy energy,
the energy associated with the dipolar interaction between
the nanomagnets, and the thermal energy of the system.
The interplay between these energies results in a blocking
temperature Tb. Tuning the lateral size and thickness of the
nanomagnets, as well as the distance between them, we move
the blocking temperature to sufficiently low values to ensure
fast fluctuations of the magnetic moments, while at the same
time keeping the interaction energy between the nanomagnets
high enough to preserve collective magnetic behavior. The
blocking temperature Tb of the nanomagnets was estimated
from zero-field-cooled and field-cooled (ZFC/FC) magne-
tization measurements performed with a superconducting
quantum interface device (SQUID) magnetometer, as shown
in Fig. 3. A characteristic peak is found at the blocking
temperature Tb that represents a crossover from static to
dynamic behavior and is associated with an average energy
barrier of the magnetic switching process [7]. For our samples
the blocking temperature is around 160 K.

In order to probe magnetic correlations in our highly
dynamic artificial kagome spin ice, diffuse scattering patterns
were measured at several temperatures above the block-
ing point. Eleven scattering patterns were taken at each

FIG. 3. Zero-field-cooled and field-cooled magnetization
(ZFC/FC) measurements of our artificial kagome spin ice sample
performed with a SQUID magnetometer using an external magnetic
field of 10 Oe. The blocking temperature Tb = 160 K is indicated
with an arrow. The standard errors are smaller than the data markers.
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temperature to check that the scattering pattern did not change
in time and therefore confirm that the sample is thermally equi-
librated. To single out the magnetic scattering part [Figs. 4(a)
and 4(c)], we took the difference between on-resonance and
off-resonance patterns at x-ray energies of 708 eV and 690 eV,
respectively. The off-resonance patterns feature no magnetic
diffuse scattering and provide a background intensity. It should
be noted here that the arcs of small peaks in the experimental
patterns in Figs. 4(a) and 4(c) arise due to contamination from
higher-order harmonics of the undulator. The dark blue broad
stripes are the shadows of the aluminum mask, which is used
to cover the structural Bragg peaks. The specular reflection is
covered by the mask and is estimated to be at qx ≈ 1.03 nm−1

and qz = 0 nm−1.
At the lower temperature of 200 K, the scattering has bands

of intensity oriented along qx , indicating the presence of mag-
netic correlations [Fig. 4(a)]. The stripes become broader near

qx ≈ 1.03 nm−1, forming elongated diamond-shaped features
that appear to touch at qz = ±0.037 nm−1 (the touching point
is obscured by the mask). As we will argue below, this feature is
related to the formation of “quasi-pinch-points” in the structure
factor. Since the temperature of the system is above the
blocking temperature Tb = 160 K, the system is dynamic and
the magnetic correlations arise from the ice-rule constraints.
This constrained collective motion is characteristic of classical
spin ices and spin liquids [32]. At the higher temperature
of 280 K, the scattering signal becomes uniform indicating
that the thermal energy at this temperature is sufficient to
break the ice-rule short-range correlations of artificial kagome
spin ice and it is in a disordered state [Fig. 4(c)]. It should
be noted that the intensities of the experimental patterns are
slightly asymmetric with higher intensity at negative qz. This
is due to a small misalignment of the sample from the 〈12̄1〉
crystallographic direction.

FIG. 4. Comparison between experimental and calculated magnetic diffuse scattering patterns in reflection geometry. (a) Magnetic scattering
pattern measured at 200 K, obtained from the difference between the on-resonance and off-resonance patterns at 708 eV and 690 eV, respectively.
(b) Numerical calculation of the resonant magnetic scattering from Monte Carlo configurations in the kagome ice I phase. (c) Magnetic scattering
pattern measured at 280 K, obtained from the difference between the on-resonance and off-resonance patterns at 708 eV and 690 eV, respectively.
(d) Numerical calculation of the resonant magnetic scattering from Monte Carlo configurations in the paramagnetic phase. Only the magnetic
scattering contribution was simulated. The scattering plane was oriented along the 〈12̄1〉 crystallographic direction [see Figs. 1(b) and 2]. Each
experimental pattern is an average over eleven measurements. The dark blue broad stripes on the experimental patterns are the shadows of the
aluminum mask, which covers the Bragg peaks and specular reflection. The arcs of closely packed reflections in the experimental patterns arise
due to the contamination from higher-order harmonics of the undulator.
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To understand the observed diffuse magnetic scattering
patterns, we match our experimental data to predictions
based on Monte Carlo simulations. Given a set of spin
configurations from a Monte Carlo run, scattering patterns
were obtained using kinematic scattering theory [28–30], as
described in the Methods section, Sec. II. The calculated
scattering patterns corresponding to experimental results are
shown in Figs. 4(b) and 4(d). Experimental data at 200 K
visually match the calculated scattering patterns in the kagome
ice I phase. Hence, the scattering pattern reflects icelike
correlations resulting from the ice rule “two moments in, one
moment out” or vice versa and vertex charges of Q = ±q are
energetically enforced. The experimental data taken at 280 K
match the scattering patterns calculated from paramagnetic
phase configurations. At this temperature, the simulations
indicate that the ice rule is frequently violated and vertices
with a total charge of Q = ±3q are common. At both
temperatures, we have used an overall prefactor to scale
the intensity of numerically simulated patterns from Monte
Carlo configurations to match the experimental data. Also, an
overall broadening of the experimental data compared with the
numerically simulated patterns can be attributed to the limited
resolution of the instrument and small variations in the shape
of the nanomagnets which produce an additional structural and
magnetic diffuse background.

Given the characteristic differences in the scattering within
these high- and low-temperature regimes, we can conclude
that, from the magnetic diffuse signal obtained with soft x-
ray resonant magnetic scattering, we can distinguish magnetic
correlations associated with different phases in an artificial
spin system.

B. Pinch points in the magnetic scattering
and the structure factor

Bulk 3D spin ice realizes a cooperative paramagnet where
spins fluctuate in a correlated manner between low-energy
states [33]. Dipolar correlations are present despite the absence
of long-range order and are one of the most interesting
features of spin ice systems [34,35]. In reciprocal space, their
characteristic hallmarks are sharp singularities in the spin
structure factor known as bow ties or pinch points. They were
initially found in ferroelectrics [36,37] and more recently, their
presence was predicted for many magnetic systems [34,35,38].
and they have been observed in both in-field [20,21] and
zero-field spin ice pyrochlores [22]. Pinch points reflect the
presence of a local divergence free condition of atomic spins,
when considering the lattice flux where the local ice rule is
obeyed. In the pyrochlore spin ice, the ice rule refers to the
local energy minimization condition of spins on the corners of
a single tetrahedron with two spins pointing towards and two
spins pointing away from the center [39].

In order to determine whether pinch points may in principle
be observed for artificial kagome spin ice, we have calculated
the spin structure factor. This is the most familiar quantity
and is independent of the particular experimental setup in a
neutron or x-ray scattering experiment. As an experimentally
accessible signature, we have also calculated the magnetic
diffuse scattering in a transmission geometry from our Monte
Carlo simulations. Results for these are shown in Fig. 5. For

the patterns in the transmission geometry, which we use also
to assess the width of the pinch points, we assume an incident
angle of 30◦ and calculate the forward scattering of x rays.
Only the magnetic scattering contribution was calculated.
In Figs. 5(a)–5(d), we show data for the paramagnetic and
kagome ice I phases using the same set of Monte Carlo con-
figurations that we used for comparison with the experimental
results shown in Fig. 4. In addition, we also show simulation
data for the kagome ice II phase in Figs. 5(e) and 5(f). In this
phase an additional magnetic Bragg contribution appears at
the pinch-point positions of (011̄), (101̄), (01̄1), and (1̄01)
[Fig. 5(e)]. However it is absent at the (11̄0) and (1̄10)
positions, which makes the latter ideal for the measurements of
the pinch-point intensity profiles; see insets in Figs. 5(b), 5(d),
and 5(f). We also note that the kagome ice II phase can
be distinguished from the kagome ice I phase by its partial
magnetic order, as also shown in Ref. [23]. Evidence of this
can be best seen by the magnetic Bragg peaks appearing in
the kagome ice II phase at, for example, (112̄) or ( 1̄

3
1̄
3

2
3 ) and

equivalent positions [see Fig. 5(e)]. It should also be noted
that, for the scattering patterns of Fig. 5, we have used the
crystallographic conventions for the hexagonal planar group
p6mm [40,41] with the unit cell defined in Fig. 1(b). To
describe this planar hexagonal lattice, we employ hki indices,
with the i index being redundant. For the native kagome unit
cell, the positions of the pinch points are described by hki

indices that have integer values. In previous works [21–23]
that considered the three-dimensional pyrochlore unit cell, the
pinch-point positions are described by fractional hkl indices.

To show the evolution of the correlations across the different
phases, let us first consider the structure factor. Upon lowering
the temperature from the paramagnetic phase, where the
scattering signal is uniform [Fig. 5(a)], characteristic regions
of high- and low-intensity scattering start to emerge and form
quasi-pinch-points in the kagome ice I phase [Fig. 5(c)]. These
subsequently evolve into sharp, singular features in the kagome
ice II phase [Fig. 5(e)]. An analogous evolution of the pinch
points is seen in the transmission geometry calculations [see
Figs. 5(b), 5(d), 5(f), and insets]. Finally, in the reflection
geometry of our experiments, we now recognize that the
previously described touching of elongated diamond-shaped
features at regular points in reciprocal space [Figs. 4(a)
and 4(b)], should also evolve into sharper and sharper features
that correspond to the appearance of the pinch points in Fig. 5.
As already noted, the magnetic pinch points emerge at the
positions of the structural Bragg peaks (not shown), some of
which we have indicated in Figs. 5(d) and 5(f), for example at
(011̄), (101̄), (11̄0), (01̄1), (1̄01), and (1̄10) at the edges of the
first Brillouin zone.

We now explain these observations in more detail. The
emergence of pinch points requires the presence of a local
conservation law for lattice fluxes [34,35,37,42,43], which
is one of the defining features of a Coulomb phase. In
particular, the observation of pinch points in neutron scattering
patterns has provided direct experimental evidence for a field-
induced and zero-field Coulomb phase in pyrochlore magnets
[20–22,34,35]. However, the trivalent vertices of the planar
kagome lattice cannot inherently realize conservation of flux,
and only allow configurations with a local lattice divergence
of absolute value � 1. Nevertheless, the charge-ordered
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FIG. 5. Numerical calculation of the structure factor (top row) and resonant magnetic scattering in transmission geometry (bottom row).
Only the magnetic contribution is shown as predicted from Monte Carlo simulations. Data for the paramagnetic [(a), (b)] and kagome
ice I phase [(c), (d)] are based on the same set of Monte Carlo configurations that we used for comparison with the experimental results shown
in Fig. 4. For the kagome ice II phase [(e), (f)] the representative configurations were also taken from our Monte Carlo simulations. Note that
magnetic pinch points appear at the same positions as the structural peaks (not shown), e.g., at (011̄), (101̄), (11̄0), (01̄1), (1̄01), and (1̄10).
Insets in the lower row are the intensity profiles of the pinch point at the (1̄10) position.

kagome ice II phase can be shown to be a Coulomb
phase, due to the fact that it spontaneously breaks the Z2

sublattice symmetry due to the formation of magnetic charge
order [14,15]. In this symmetry-broken phase, the allowed
spin configurations are identical to the constraints found
on the kagome planes of the three-dimensional pyrochlore
spin ice with a magnetic field along the [111] direction that
was experimentally investigated in Refs. [20,21]. In this 3D
situation, the sublattice symmetry of the (buckled) kagome
planes of the pyrochlore lattice is inherently broken, as one
sublattice features out-of-plane spins pointing along the [111]
direction, while the out-of-plane spins on the other sublattice
point towards the negative [111] direction. In the presence of a
field along the [111] axis, the flux along that direction is fixed
and vertices in the kagome planes are forced to have alternating
minority spins (pointing towards or away from the center of a
tetrahedron) [44], which amounts to an explicit breaking of the
sublattice symmetry. The local flux conservation is fulfilled
for the low-energy configurations in this three-dimensional
setting and, by extension, the same is true for the kagome
ice II phase. However, this 3D picture requires the global
sublattice symmetry to be explicitly broken, and it would be
desirable to develop a more local picture that can accommodate
the spontaneous symmetry breaking of the ice I to ice II
transition. Indeed, such a viewpoint can be developed on the
basis of a dimer mapping [42,45].

Let us consider the mapping from oriented hard-core dimers
to a divergence-free configuration of fluxes on the links of the
lattice by Huse et al. [42]. Indeed, due to the Z2 sublattice
symmetry breaking of magnetic charge order, the kagome
ice II phase allows a unique mapping of spin configurations
to oriented hard-core dimers on the kagome lattice [14,15,44]:
At each vertex, there is precisely one minority charge, which
connects to the minority charge of one adjacent vertex, and
uniquely identifies the corresponding link as carrying a dimer
oriented from the negative minority charge to the positive one,
while the other two links are empty [14,15]. Following Huse
et al. [42], we can then define the lattice flux carried by a link
in terms of the occupation number ni(r) of dimers on the link
r → r + ei as

Bi(r) = Q(r)

(
ni(r) − 1

3

)
, (1)

using the fact that the total monopole charge Q(r) = ±1 has
long-range order in the kagome ice II phase and thus sets the
orientation of the fluxes for the respective sublattices. Note that
this lattice flux has twice the magnitude on the links carrying
dimers compared with the flux on the empty ones. Therefore,
one can picture a pair of fluxes entering one vertex, being
carried to an adjacent vertex along the dimer, and reemerging
as two separate fluxes from there. Clearly, such “flux dimers”
satisfy flux conservation. Thus, as in the case of the square
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and cubic lattices of Huse et al. [42], the lattice divergence
vanishes, and the field can be cast into the habitual language
of a lattice gauge theory and forms a Coulomb phase. As the
kagome ice II phase is a genuine Coulomb phase with a local
conservation law, its structure factor is predicted to feature
sharp singularities at the pinch points [23]. This is shown by
the pinch-point intensity profile in the inset of Fig. 5(f).

To proceed with our discussion, we note that spin config-
urations can be uniquely mapped to a dimer covering only
in the monopole charge ordered kagome ice II phase. By
contrast, the kagome ice I phase has no long-range charge
order and thus must violate the divergence-free condition.
Consequently, it does not allow for uniquely defined flux
dimers as in Eq. (1) [46]. Nevertheless, there will be charge-
ordered clusters in the kagome ice I phase so that, while a
global dimer mapping does not exist, it is still possible to
locally identify dimers within each charge-ordered cluster.
As the structure factor is expressed in reciprocal space, and
can be thought of as a spatial average over the system, the
overall structure encoded in the local conservation law of the
low-temperature ordered phase is therefore also observed in
the kagome ice I phase. Additionally, the larger number of
vertices that are not covered by flux dimers gives rise to the
broadening of the pinch points.

Indeed, a broadening of the pinch points can be seen in
our calculations of the structure factor and of the resonant
magnetic scattering in a transmission geometry for the kagome
ice I phase (Fig. 5). Comparing the calculations from the
different phases in Fig. 5, we note that the quasi-pinch-points in
the scattering profiles of the kagome ice I phase are very similar
to the fully developed pinch points of the kagome ice II phase.
However, following the arguments above, no sharp singularity
can exist at the center of these quasi-pinch-points. Finally in the
paramagnetic phase there is a random distribution of Q = ±q

and Q = ±3q charges. Therefore a smoothly varying diffuse
signal is established, as can be seen in Figs. 5(a) and 5(b).

It should be noted that, in general, the experimental
detection of the pinch points in a transmission geometry is
extremely challenging: due to the p6mm symmetry of the
lattice and the absence of systematic extinctions, structural
Bragg peaks are positioned at the same q values as the pinch
points, thus overlapping with them. Furthermore, a soft x-ray
detector with the required dynamic range to capture both strong
Bragg scattering and a weaker magnetic diffuse scattering is
not commonly available. Despite these difficulties, our results
show that it is possible to qualitatively distinguish the different
phases of artificial kagome spin ice and capture features that
are directly related to pinch points in the reflection geometry
employed in our setup.

Given these insights, we conclude that our experimental
data provide evidence of the emergence of pinch-point
scattering in artificial kagome spin ice. These correlations
are highly distinct from those found in the high-temperature

paramagnetic phase, and present direct evidence that the ice
rules are obeyed, reflecting the spin dynamics that minimize
the dominant nearest-neighbor interaction terms of the needle
dipole Hamiltonian on the kagome lattice.

IV. CONCLUSIONS

We have demonstrated that the measurement of diffuse
scattering with resonant synchrotron x rays provides a highly
sensitive method for the investigation of short-range correla-
tions in nanomagnet systems. In particular, we have shown that
the phases of artificial kagome spin ice can be distinguished
and comparison with Monte Carlo simulations confirms the
realization of kagome ice I phase magnetic correlations
at high moment fluctuation rates. This combination of a
highly dynamic system with strong short-range correlations
is characteristic of a classical spin liquid (or a cooperative
paramagnet). Although the kagome ice I phase is not a genuine
Coulomb phase, since the divergence-free condition does not
extend throughout the lattice, the features of quasi-pinch-
points already bear similarities to the fully developed pinch
points with sharp singularities associated with the kagome
ice II Coulomb phase. We have used a mapping to oriented
dimer coverings to argue that such quasi-pinch-points should
indeed be expected above the phase transition to the charge-
ordered kagome ice II phase.

We conclude that, like in the bulk pyrochlore spin ices,
diffuse scattering gives a unique signature of icelike behavior
in artificial spin ices. This technique also promises to cast
light onto a number of other problems in nanoscale magnetic
systems, for example to understand the ordering processes
during magnetic self-assembly of nanoparticles [47] or the for-
mation of skyrmion lattices [48]. This highly sensitive method
will therefore be an important tool for the discovery of novel
physics in two-dimensional systems beyond artificial spin ice.
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