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TCM Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 31 July 2012; published 12 October 2012)

We use particle entanglement spectra to characterize bosonic quantum Hall states on lattices, motivated by
recent studies of bosonic atoms on optical lattices. Unlike for the related problem of fractional Chern insulators,
very good trial wave functions are known for fractional quantum Hall states on lattices. We focus on the
entanglement spectra for the Laughlin state at ν = 1/2 for the non-Abelian Moore-Read state at ν = 1. We
undertake a comparative study of these trial states to the corresponding ground states of repulsive two-body or
three-body contact interactions on the lattice. The magnitude of the entanglement gap is studied as a function
of the interaction strength on the lattice, giving insight into the nature of Landau-level mixing. In addition, we
compare the performance of the entanglement gap and overlaps with trial wave functions as possible indicators
for the topological order in the system. We discuss how the entanglement spectra allow to detect competing
phases such as a Bose-Einstein condensate.
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I. INTRODUCTION

Optical lattices present unique opportunities to simulate the
physics of charged particles in strong magnetic fields.1 While
early proposals for artificial gauge fields relied on rotation
to mimic the action of Lorentz forces by the Coriolis forces
acting in the rotating frame,2,3 optical lattices provide a robust
experimental setting where the effect of fields can be simulated
by imprinting complex phases on tunneling elements between
neighboring sites.4–6 The most elegant schemes for generating
synthetic gauge fields in atomic gases rely on the use of
Berry phases resulting from a set of internal states subject
to a spatially varying optical dressing.7–9 In particular, these
schemes enable the generation of high densities of flux per
plaquette on the underlying lattice, giving access to a regime
of strong correlation where exotic topologically ordered phases
can appear, including fractional quantum Hall liquids such as
the Laughlin state6,10 and more exotic Hall liquids which rely
on the presence of the lattice.11–13

A related class of lattice models relies on spin-orbit
coupling to generate complex hopping terms in single-particle
tight-binding Hamiltonians. If the resulting single-particle
bands are flat and have a nonzero Chern number, these
systems can support states resembling fractional quantum
Hall (FQH) liquids that are known as fractional Chern insu-
lators (FCI).14–17 Fractional Chern insulators have been most
convincingly shown to exhibit the same type of topological
order as FQH states by analyzing their particle entanglement
spectra.18

The entanglement spectra (ES) were initially introduced by
Li and Haldane19 in the context of the FQHE, stimulating
an extensive range of studies.18,20–34 They have also been
studied and applied to several other systems including spin
systems,35–45 as well as topological insulators46–48 Bose-

Hubbard models,49 or complex paired superfluids.50 The ES
corresponds to the spectrum of the reduced density matrix
of the system ground state when one cuts the system into
two parts. The system partition can be performed in different
manners such as a real-space, momentum, or particle-space
partition. Each cut can unveil different aspects of the state that
is probed. In the case of the FQHE, the ES are related to the
bulk or edge excitations. As these features characterize the
given phase, the ES acts as a fingerprint of the system that
only requires knowledge of the ground-state wave function.

For the above reasons, the ES were found to be particularly
well suited as a tool to characterize FCI states as they only
require knowledge of the ground-state wave function which
can be obtained numerically for small model systems.18 Hence,
it was possible to establish a detailed correspondence between
the entanglement spectra of FCI with those of fractional
quantum Hall states.51 In particular, it has recently been
shown52 that the ES is able to distinguish between a Laughlin-
like state and a charge-density wave state (CDW). However,
an important difference is that for fractional quantum Hall
states, very accurate analytic many-body trial wave functions
capturing the essence of these strongly correlated quantum
liquids are known,53–57 so a very detailed understanding of
the topological order and the fundamental excitations in FQH
systems has been achieved. We note that mappings of FQH
wave functions onto topological flat bands58–62 have recently
led to some encouraging results, including considerable
overlaps with FCI eigenstates59,60 and the demonstration of
an analytic continuation between these systems.60,62

In this paper, we focus on quantum Hall states on lattices
with a homogeneous density of gauge flux, as this gives us
access to a lattice-based system where quantum Hall states
can be understood both in terms of entanglement spectra and
many-body trial wave functions. As opposed to FCIs, quantum
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Hall states on lattices admit a continuum limit which is known
to be exactly the usual FQHE. We deploy exact numerical
diagonalization on a square lattice with periodic boundary
conditions as the main tool for our investigation. Our study
provides an independent identification of the incompressible
phases on the lattice as fractional quantum Hall states by
analyzing the counting of quasiparticle states in the particle
entanglement spectrum. To obtain the expected state counting,
we establish the correspondence between the momentum
sectors of a lattice-based system with periodic boundary
conditions and the corresponding continuum problem on the
torus. We find that for small enough particle density n per
lattice site, the counting of the continuum problem is accurately
reproduced. In particular, this allows us to mount evidence
in favor of the non-Abelian Moore-Read state as the ground
state of bosons with repulsive three-body interactions at filling
factor ν = 1 on the lattice. Finally, we study how the entan-
glement gap, defined as the distance between the eigenvalues
of the entanglement spectrum related to the universal property
of the bulk excitations and the nonuniversal states at higher
entanglement energy, relates to the magnitude of the overlap
with the respective trial wave functions describing the target
phase. This establishes the entanglement gap as a good proxy
for the overlap, and hence for the stability of topological order.

The structure of this paper is as follows. In Sec. II, we
introduce the model Hamiltonian for bosons on lattices in
the presence of magnetic fields and with periodic boundary
conditions. Section III is devoted to a discussion of the
corresponding continuum FQHE problem on the torus, where
we introduce the many-body wave functions of the target
phases which we explore in this paper, namely the Laughlin
state (Sec. III A) and the Moore-Read state (Sec. III B). We
then review the definition and characteristics of entanglement
spectra in Sec. IV, and present a detailed analysis of the
particle entanglement spectra of our two target phases in
Sec. V. In the case of the Laughlin state, we describe how
certain features of the ES can be used as a probe to detect a
competing Bose-Einstein condensed phase. Finally, our results
are summarized in Sec. VI.

II. MODEL

We study the physics of interacting bosons on a two-
dimensional square lattice in a homogeneous magnetic field
applied in the direction perpendicular to the lattice. This
problem is described by the Bose-Hubbard model with
minimal coupling to a gauge field by Peierls’ substitution. We
further assume the presence of on-site two-body interactions of
strength U and three-body interactions of strength V , yielding
the many-body Hamiltonian

H = −t
∑
〈r,r′〉

(eiArr′ â†
r âr′ + H.c.) (1)

+U
∑

r

â†
r â

†
r ârâr + V

∑
r

â†
r â

†
ra

†
r ârârâr.

Here,〈r,r′〉 denotes neighboring lattice sites r = (x,y), â(†)
r are

bosonic annihilation (creation) operators, and Arr′ = ∫ r′

r A · dl
are Aharonov-Bohm phases deriving from the coupling to the
underlying vector potential A. We adopt units such that the

lattice spacing is 1, and positions (x,y) can be indicated as
integers.

Experimentally, bosonic Hubbard models can be engi-
neered in optical lattices systems,63 where gauge potentials
can be simulated by a range of different setups.4–9 Two-body
interactions can be conveniently introduced by Feshbach
resonances,64,65 and there are proposals for three-body inter-
actions based on strong three-particle losses.66,67 Given this
pace of progress in simulating Hubbard models, Hamiltonians
of the form (1) may be realizable within the near future.

For our numerical exact diagonalization calculations, we
express the Hamiltonian (1) for an ensemble of N bosons on
a square lattice with Ns = LxLy sites in the presence of Nφ

flux quanta and with periodic boundary conditions in both
the x and y directions. This setup corresponds to a field of
flux density nφ = Nφ/Ns , which we choose to describe in the
Landau gauge

A = 2πnφxey, (2)

such that momentum in the y direction is a conserved quantity.
Due to the concurrence of a periodic lattice potential, periodic
boundary conditions, and the presence of a magnetic field, this
translational symmetry is reduced68 to the possible momenta
of ky = 2mπ/Kmax

y , m = 0, . . . ,Kmax
y − 1 with the maximal

momentum index given by the greatest common denominator

Kmax
y = gcd(Nφ,Ly). (3)

This can be simply explained by applying Blochs theorem to
magnetic unit cells enclosing an integer number of flux quanta.
Due to the reduced symmetry, the orbitals are labeled by a
sublattice index s for the y position inside the magnetic unit
cell in addition to the momentum ky . Both interaction terms in
Eq. (1) conserve this Landau momentum, so the Hamiltonian
is block diagonal and we construct the eigenstates in the
Fock space given by |α〉 = ∏

ζ (â†
ζ )nζ (α)|0〉, where ζ = (x,ky,s)

denotes the set of single-particle quantum numbers.
We should stress that this set of states does not imply a

projection to the lowest Landau level. Instead, it includes all
of the bands of the fractal single-particle spectrum known as
the Hofstadter butterfly,69 such that Landau-level mixing is
part of the model. The equivalent Landau-level filling (i.e.,
the particle density with respect to the number of states in the
lowest band) is given by ν = N/Nφ .

III. FQH ON THE TORUS

We now briefly describe some properties of the FQHE in
the torus geometry. We consider a torus spanned by L1 = L′

xex

and L2 = L′
yey , where ex and ey are two perpendicular unit

vectors. Given a setting where the torus is pierced by Nφ flux
quanta, we have L′

xL
′
y = 2πl2

BNφ , where lB is the magnetic
length. The Hamiltonian is given by

H = 1

2m

N∑
i

�2
i + U

∑
i<j

δ̃(ri − rj )

+V
∑

i<j<k

δ̃(ri − rj )δ̃(rj − rk), (4)

where �i = −ih̄∇i − eA(ri) is the canonical momentum of
particle j in the presence of a magnetic field. Since we use
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periodic boundary conditions, the delta function is defined as
δ̃(r) = ∑

n,m δ(r + nL1 + mL2).
In the Landau gauge (A = 2πnφxey), the one-particle

orbital in the lowest Landau level with momentum index
j = 0, . . . ,Nφ − 1 is given by

φj (x,y) = 1

(
√

πL′
ylB)1/2

exp

[
− x2

2l2
B

]

×ϑ

[ j

Nφ

0

](
Nφ

L′
y

(y − ix)

∣∣∣∣i L′
x

L′
y

)
, (5)

where ϑ[ a
b ](z|τ ) = ∑

n eiπτ (n+a)2+2iπ(n+a)(z+b) are the gener-

alized Jacobi theta functions. This model is the continuous
version of Eq. (1).

As for the lattice, the momentum in the y direction is a con-
served quantity and the N -body Hamiltonian is block diagonal
with respect to the total momentum KT

y = ∑
i jimodNφ . Note

that in the case of the lattice, the total momentum Ky is defined
modulo Kmax

y .

A. Laughlin state

In the lowest Landau level, when only two-body interac-
tions are present [i.e., V = 0 in Eq. (4)], the Laughlin state
is the densest zero-energy ground state.53 A hallmark of this
phase is its two-fold ground-state degeneracy. For a finite size
system with Nφ = 2N the two ground states can be found at
momenta of KT

y = 0, N . They are given by

�(z1, . . . ,zN ) = frel(z1, . . . ,zN )Fc.m.(Z)e− 1
2

∑
i x2

i / l2
B , (6)

where Fc.m. is a center-of-mass wave function that depends
only on the center-of-mass coordinate Z = ∑

i zi , while frel

is the wave function describing the relative motion. On a
rectangular torus of size (L′

x × L′
y), we have

frel =
∏
i<j

ϑ

[ 1
2
1
2

] (
zi − zj

L′
y

∣∣∣∣i L′
x

L′
y

)2

. (7)

Due to the symmetry under translations of the center of
mass, the center-of-mass wave function at ν = 1/2 is two-fold
degenerate70 and is given by

Fc.m.(Z) = ϑ

[ l
2 + Nφ−2

4
2−Nφ

2

] (
2Z

L′
y

∣∣∣∣2i
L′

x

L′
y

)
, (8)

where l = 0,1 indexes the two degenerate wave functions.

B. Moore-Read state

In the lowest Landau level, the Moore-Read state55 is the
densest zero-energy ground state of the hardcore three-body
interactions, given by Eq. (4) with U = 0. It embodies the
physics of a chiral p-wave superconductor of composite
fermions,71,72 which can be cast in the real-space form of a
BCS paired state in terms of the pair wave function 1/(zi − zj ).
An equivalent expression can be found for the torus, where
the ground state is three-fold degenerate. On a rectangular
torus, these ground states can be found at ky momenta
KT

y = {0,0,N
2 }. For our purposes, it is most useful to obtain the

Moore-Read trial wave functions from the Laughlin state by

using the Cappelli formula,73 which relates the Moore-Read
state of N particles to two independent layers of Laughlin
ν = 1/2 states with half the number of particles. Using the
notations for a sphere or disk

�Pf(z1, . . . ,zN )

= S

⎛
⎝ N/2∏

i<j=2

(zi − zj )2
(
zN

2 +i − zN
2 +j

)2

⎞
⎠ , (9)

where S is the symmetrization operator. On the torus, the
Laughlin state is two-fold degenerate while the Moore-Read
state is three-fold degenerate. Similar to what happens for
the quasihole states on the disk or sphere geometry, the
symmetrization induces linear dependencies. Here one can
write four states:

�Pf
KT

y
(z1, . . . ,zN ) = S

(
�

Lg

KT
y1

(z1, . . . ,zN/2)

×�
Lg

KT
y2

(zN/2+1, . . . ,zN )
)
, (10)

with KT
y1

,KT
y2

being equal to one of the degenerate Laughlin
states with KT

y = 0 or KT
y = N ′ = N

2 . The total momentum
KT

y = KT
y1

+ KT
y2

mod Nφ perfectly matches the one of the
Moore-Read (MR) state: Taking KT

y1
= KT

y2
= 0 yields a

first KT
y = 0 MR state, taking KT

y1
= KT

y2
= N ′ again yields

KT
y = 0, and finally taking KT

y1
= 0 and KT

y2
= N ′ one obtains

the remaining MR ground state at KT
y = N ′ = N/2 state

(choosing KT
y1

= N ′ and KT
y2

= 0 is equivalent due to the
symmetrization and does not yield an additional state).

IV. PARTICLE ENTANGLEMENT SPECTRA

The entanglement spectrum gives access to many of the
spectral properties of the system which are encoded in the
ground-state wave function.19 It is defined from the reduced
density matrix of a subsystem resulting from the partition
of the system into two (or more) parts A and B. For the
particle entanglement spectrum (PES) this partition consists
in distributing the particles into two subgroups (A and
B) while keeping the geometry unchanged.74 The reduced
density matrix ρA = TrBρ, obtained by tracing out the NB

particles in the B partition, yields the entanglement spectrum
by diagonalizing and classifying the resulting eigenstates
according to the symmetries of the problem. This process
is equivalent to a Schmidt decomposition of the original
many-body state into orthogonal bases for the partitions

|�〉 =
∑



∑
i

e−ξ
,i/2
∣∣�A


,i

〉 ⊗ ∣∣�B

,i

〉
, (11)

where 
 stands for quantum numbers designating a sector
of the decomposition and i indexes states in each sector,
and the eigenvalues λ
,i = e−ξ
,i/2 of the decomposition are
represented on a logarithmic scale. The vectors in Eq. (11) are
orthonormal [i.e., 〈�A


,i |�A

 ′,j 〉 = 〈�B


,i |�B

 ′,j 〉 = δi,j δ
,
 ′ ].

The entanglement spectrum is given by plotting ξ ’s over the
relevant 
 .

It has been observed that model states such as the Laughlin
or MR states have a characteristic PES:74 The number of
nonzero eigenvalues for ρA is identical to the number of
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quasihole states for a similar system with the same geometry
and NA particles. This number is usually exponentially lower
than the dimension of ρA. The same features can often
persist for eigenstates of realistic interaction Hamiltonians:
for ground-state wave functions with robust topological order,
one should observe a clearly defined entanglement gap,
separating an ensemble of low-lying entanglement eigenvalues
from nonuniversal eigenvalues located at higher entanglement
energies. Notice that model wave functions can be thought of
as having an infinite entanglement gap.

For the model associated to the Hamiltonian (1), we
classify the sectors of the entanglement spectrum by the
Landau momentum ky = 0, . . . ,Kmax

y − 1 (i.e., 
 = ky). An
equivalent classification can be chosen for the continuum
fractional quantum Hall problem on the torus,70 except that the
corresponding Landau momentum KT

y can take all Nφ distinct
values. To compare the entanglement spectra in these two
distinct situations, we identify the momentum sectors modulo
Kmax

y . In particular, we will study the counting of the numberN
of low-lying entanglement eigenvalues below an entanglement
gap. In this case, we expect the following mapping between
the values for the torus NT and lattice NL

N L(ky) =
∑
KT

y

δky ,(KT
y mod Kmax

y ) N T
(
KT

y

)
. (12)

Note that for degenerate ground-state manifolds, the PES
has to be calculated for the incoherent average reduced density
matrix ρtot for the ensemble of ground states {|�α〉}, given by
the sum

ρtot = 1

dGS

∑
α

|�α〉〈�α| (13)

over the dGS degenerate ground states. As discussed in
Ref. 74, this definition yields model state PES for degenerate
ground-state manifolds which recover the properties of the
nondegenerate case on simply connected surfaces.

V. TARGET PHASES

The presence of incompressible fractional quantum Hall
liquids is well established for the Hamiltonian (1). These states
include the fractional quantum Hall liquids of the continuum

problem,6,10 however, the presence of the lattice potential also
gives rise to additional incompressible states.11–13 In this paper,
our aim is to establish the use of entanglement spectra for
lattice-based systems, so we shall focus on the states with an
equivalent in the continuum case and undertake a comparison
of their features.

A. Laughlin state

We begin our analysis with the Laughlin state of bosons at
ν = 1/2, as the best investigated quantum Hall state on lattices.
We use the analytic form of the Laughlin states in the contin-
uum [Eq. (6)] and substitute the discrete lattice coordinates,
such that z = a/�0(mex + iney) for lattice site i = (m,n). By
virtue of the folding of momenta (3), the two ground states
(8) now occur at ky = 0 and ky = N mod Kmax

y (i.e., they may
either remain at different k points or are both mapped to zero
momentum if N mod Kmax

y = 0). In our simulations, we find
that for lattice systems with sufficiently small particle density,
the momenta of the numerically obtained ground states are
in agreement with this prediction. In particular, there is an
extended regime where a two-fold degenerate ground state
with a finite gap is found.10 Hence, we can analyze the particle
entanglement spectrum of the ground-state manifold according
to the total density matrix (13).

We begin to illustrate the mapping of the entanglement
spectrum on the torus to the lattice (12) for a small model
system with N = 6 particles moving in the field of Nφ =
12 flux quanta. We first consider the PES with NA = 3.
Figure 1(a) shows the PES for the Laughlin state on the
torus geometry. The PES yields the following counting
for the 12 distinct KT

y -momentum sectors on the torus:
(10,9,9,10,9,9,10,9,9,10,9,9). Figure 1(b) displays the PES
for the ground state of the model Hamiltonian that gives rise
to the Laughlin state, but with an additional small contribution
from a longer-range interaction. In that case, the PES exhibits a
entanglement gap. The counting below the gap exactly matches
the one of the Laughlin state.

We now consider the lattice model. The counting of the
Laughlin on the torus is reproduced exactly on a lattice of
geometry Lx = 4 and Ly = 12 for U/t = 1 and V = 0 [see
Fig. 2(a)] as this lattice retains Kmax

y = Nφ = 12. Notice that
the total number of states above the gap per momentum sector
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N=6, NA=3, NΦ=12, Laughlin
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 0  2  4  6  8  10
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Ky
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N=6, NA=3, NΦ=12, V0+ 0.3 V2

(b)

FIG. 1. (Color online) Particle entanglement spectra for N = 6 bosons on the torus of unity aspect ratio at filling factor ν = N/Nφ = 1/2,
for a particle partition with NA = 3. Left: Bosons interact through hardcore interaction. Right: Bosons interact through hardcore interaction
and an additional longer-range interaction.
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FIG. 2. (Color online) Particle entanglement spectra for N = 6 bosons on a lattice at filling factor ν = N/Nφ = 1/2, for a particle partition
with NA = 3 and for different lattice geometries. The spectra are calculated for the two-fold degenerate ground-state manifold of the Hamiltonian
(1) with U/t = 1 and V = 0.

is much higher in the lattice case than in the continuum model
shown in Fig. 1(b). This is a consequence of the Hilbert space
dimension being set by N and Lx × Ly in the lattice case, and
by N and Nφ in the continuum case. So our confirmation of a
clear entanglement gap for such a small number of particles in
the lattice model is even more remarkable.

For lattices with other aspect ratios, a folding of the momen-
tum axis often occurs, in which case the maximum momentum
is reduced. Several examples for such entanglement spectra are
shown in Figs. 2(b)_ through 2(d). For example, in Fig. 2(b),
for the geometry with Lx = 7, Ly = 8, and Kmax = 4 the
use of Eq. (12) predicts the counting (28,28,28,28), which
is indeed reproduced. The same result is also obtained for
the aspect ratio of 12 × 4 sites in Fig. 2(c). However, we do
not always obtain a PES with a well-defined entanglement
gap. For the lattice geometry of Lx = 6 and Ly = 8, we find
that no threshold value ξt for the entanglement energy yields a
clear-cut definition ofN L

ξt
(ky). We could speculate whether this

is due to the commensurability of the number of particles with
Lx . In such geometries, it has previously been found that CDW
states can intervene.12 However, there is a range of phases
which may be competing with fractional quantum Hall liquids
in optical flux lattices, which include bosonic condensates with
symmetry breaking,75 or more general supersolid phases.75,76

As a first step towards understanding the lattice which does
not conform to the picture of an incompressible Laughlin state
(Lx = 6, Ly = 8), we investigate several additional entan-
glement spectra for this system, analyzing the dependency
on the number of particles in the partition A. The results
for NA = 1 and NA = 2 are shown in Fig. 3. First, we note

that the entanglement spectrum for NA = 1 carries nontrivial
information for the lattice, while the corresponding continuum
limit would yield a number of eigenstates which is given by
the total Hilbert space dimension (i.e., the number of states in
the lowest Landau level). On the lattice, we instead find that
a gap opens in the entanglement spectrum above a number
of low-lying states which precisely matches the number of
eigenstates in the lowest Landau level. Specifically, Fig. 3(a)
reveals precisely 12 states below the gap located at about
ξ = 6. For a Laughlin state, we would expect all 12 of these
states to be degenerate. Second, we find that there are two
eigenstates which are separated from the other ten by a further
entanglement gap located near ξ = 2, reproducing the same
number and momentum sectors KA

y = 0 and KA
y = 2 of the

two low-lying states that we had observed in the PES for NA =
3 in Fig. 2(d). To complete our survey, we also examine the
entanglement spectrum for NA = 2 in Fig. 3(b). Again, we find
two degenerate low-lying eigenstates with an entanglement
gap near ξ = 2 and located in the same momentum sectors.
This invariance of the number of entanglement eigenvalues
with the number of particles in the partition is fundamentally
different from the behavior that we expect from topologically
ordered phases. By contrast, the ability to absorb further
particles without any change of the physical properties (i.e., the
number of low-lying excitations) can be seen as an indication
of the physics of Bose condensation.

To probe for the presence of a Bose condensate, we use
the single-particle density matrix ρs

ij = 〈â†
i âj 〉, calculated

between lattice sites i, j . This matrix is exactly a reduced
density matrix for the specific value NA = 1. A state with
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FIG. 3. (Color online) Particle entanglement spectra for N = 6 bosons on a lattice of 6 × 8 sites at filling factor ν = N/Nφ = 1/2 for particle
partitions with (a) NA = 1 and (b) NA = 2 [NA = 3 shown in Fig. 2(d)]. For NA = 1, the upper blue dashed line marks the entanglement gap
below which the counting matches the lowest Landau level state counting of 12 states, and the lower black dashed line marks the entanglement
gap that isolated the two low-lying eigenstates. For NA = 2, the black dashed line marks the entanglement gap that isolated the two low-lying
eigenstates.

a finite condensate fraction is signalled by a single large
eigenvalue λ0 of ρs , whose magnitude scales with the system
size N . However, we find that the ground-state wave function
for our system with Lx = 6 and Ly = 8 and Nφ = 12 yields
a two-fold degenerate pair of largest eigenvalues λ0 = λ1 �
2.472. This characteristic is known to be associated to discrete
symmetry breaking in the thermodynamic limit.75 We thus
follow the procedure introduced by the authors of Ref. 75
and calculate the density matrix for symmetry-broken states
which are obtained in our case by constructing superpositions
formed of the two lowest-lying eigenstates |S〉 = c0|�0〉 +
(1 − |c0|2)|�1〉 that optimize the largest eigenvalue of ρs

ij .
For the symmetry-broken state that results from superposing

two states with different momenta, we find a single large
density matrix eigenvalue λ0(S) = 4.4911, corresponding to a
condensed fraction of 74.8% for the N = 6 particle system (the
condensate fraction rises to 95% as interactions are reduced
to U = 0.1t). At the same time, the state breaks translational
invariance, forming stripes running around the short cycle of
the simulation cell. A similar finite size effect had previously
been reported for lattices,12 as well as for continuum problems
of bosons.77 It is likely that the properties of the particular
lattice size which we discuss here are related to its flux density
of precisely nφ = 1/4. At this value of nφ , the single-particle
Hofstadter spectrum consists of a single, moderately wide
band which naturally supports Bose condensation at low

TABLE I. Properties of the particle entanglement spectra of the ground-state manifold of the Hamiltonian for U/t = 1 and V = 0 (1) for
different model systems of N bosons with Nφ = 2N flux quanta. We indicate the momenta of the two degenerate ground states ky(GS) as well
as the energy gap � and the ground-state energy splitting δ. The counting of the particle entanglement spectrum is shown for the partition with
NA = 	N/2
 and for different lattice geometries. For both these properties, we indicate the agreement with the predictions for the Laughlin
state and the entanglement gap �ξ .

N Lx Ly ky(GS) match � δ PES: {NAL(ky)} match �ξ

4 4 4 0,0 ✘

4 6 4 0,0 ✘

4 8 4 0,0 � 0.043 5.9e-04 6,4,6,4 � 3.59
4 14 4 0,0 � 0.058 1.8e-05 6,4,6,4 � 7.42
4 6 6 0,0 � 0.050 0.023 12,8 � 4.86
4 4 8 0,4 � 0.043 5.9e-04 3,2,3,2,3,2,3,2 � 3.59
4 6 8 0,4 � 0.066 7.1e-04 3,2,3,2,3,2,3,2 � 8.1
4 7 8 0,4 � 0.057 2.9e-10 3,2,3,2,3,2,3,2 � 10.9
4 8 8 0,4 � 0.052 0 3,2,3,2,3,2,3,2 � 11.5
4 10 8 0,4 � 0.040 1.4e-08 3,2,3,2,3,2,3,2 � 12.9
5 6 8 0,1 � 0.059 0 20,15 � 5.5
5 8 8 0,1 � 0.063 0 20,15 � 9.2
5 6 10 0,5 � 0.067 0 4,3,4,3,4,3,4,3,4,3 � 8.4
6 4 12 0,6 � 0.054 0 10,9,9,10,9,9,10,9,9,10,9,9 � 2.63
6 12 4 0,2 � 0.054 0 28,28,28,28 � 2.63
6 6 8 0,2 � 0.0099 0.0029 �E = 0 ✘a

6 7 8 0,2 � 0.043 8e-6 28,28,28,28 � 3.5

aSee Fig. 3 and main text in Sec. V A for a discussion.
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FIG. 4. (Color online) Energy gap � and entanglement gap �ξ in
the NA = 2 and in the NA = 3 sectors as a function of U for ν = 1/2,
N = 5, Lx = 6, and Ly = 10. The vertical purple line is the band
gap. Note the different offsets on the scales for � and �ξ .

interaction strength. As we do not examine this question in
further detail, we can only speculate whether all of the above
features survive in the thermodynamic limit, in which case
the phase could be considered a supersolid.75 For the purpose
of the current paper, we can conclude that an entanglement
spectrum with few low-lying states, whose number remains
invariant for different partitions of the system, is indicative
of a condensed state. Cases where such eigenvalues occur in
different momentum sectors are likely related to condensates
with symmetry breaking.

Returning to our main discussion of the properties of the
Laughlin state, we present a collection of the properties of the
entanglement spectra in Table I, which gives an overview for
several lattice geometries that we have studied. To summarize
our principal findings from these data, we have established that
the counting of excitations encoded in the PES for the Laughlin
states on the lattice Hamiltonian at filling factor ν = 1/2 agrees
well with the data for the continuum problem in the lowest
Landau level for small flux/particle density per plaquette. In
particular, the entanglement spectra of this state show a clear
entanglement gap �ξ .
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FIG. 5. (Color online) Overlap O and entanglement gap �ξ in the
NA = 3 sectors as a function of U for ν = 1/2, N = 5, Lx = 6, and
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φ � 0.4 up to which the ground
state exhibits the Chern number of the Laughlin state (Ref. 10).

Unlike the problem on the torus, where it is customary to
consider the projection of the Hamiltonian into the lowest
Landau level, the full lattice Hamiltonian (1) includes all
Landau (Hofstadter) bands. Hence, we can study the effect
of band mixing that occurs as a function of the interaction
strength U . The evolution of the entanglement gap �ξ with
U is shown in Fig. 4, alongside the energy gap �. Unlike the
energy gap which always increases with U , the entanglement
gap reaches a maximum value for an interaction strength of
the order of the band gap and then decreases.

We also computed the total overlaps Otot =
1
d

∑d
i,j=1 |〈�GS,i|�model,j 〉|2 of the exact ground states

with the model state as a function of the interaction strength.
The results are shown on Fig. 5. One can notice that the
overlaps are very high. Moreover, the overlap is an increasing
function of U , as is the energy gap.

It is now well established that the presence of an entan-
glement gap, in conjunction with the specific state counting
in the PES, characterizes the topological order in the system.
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FIG. 7. (Color online) Particle entanglement spectra for N = 6
bosons on a lattice at filling factor ν = N/Nφ = 1, for a particle
partition with NA = 3 and for different lattice geometries. The spectra
are calculated for the three-fold degenerate ground-state manifold of
the Hamiltonian (1) with U = 0 and V/t = 1. Left: The counting of
the states below the gap is (7,6,6,7,6,6). It matches the one of MR
quasiholes states on the torus as Kmax

y = Nφ .
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TABLE II. Properties of the particle entanglement spectra of the ground-state manifold of the Hamiltonian for U = 0 and V/t = 1 (1) for
different model systems of N bosons with Nφ = N flux quanta. We indicate the momenta of the three degenerate ground states ky(GS) as well
as the energy gap � and the ground-state energy splitting δ. The counting of the particle entanglement spectrum is shown for the partition with
NA = 	N/2
 and for different lattice geometries. For both these properties, we indicate the agreement with the predictions for the Moore-Read
state and the entanglement gap �ξ .

N Lx Ly ky(GS) match � δ PES: {NAL(ky)} match �ξ

4 5 4 0,0,2 � 0.016 0.005 (3,2,3,2) � 7.4
4 9 4 0,0,2 � 0.015 4.2e-06 (3,2,3,2) � 14.2
4 10 4 0,0,2 � 0.005 3.1e-04 (3,2,3,2) � 15.3
4 4 6 0,0,0 ✘

4 6 6 0,0,0 � 0.011 0.0012 (6,4) � 11.8
4 8 6 0,0,0 � 0.0063 1.7e-05 (6,4) � 14.1
4 10 6 0,0,0 � 0.0036 1.0e-06 (6,4) � 16.0
4 4 8 0,0,2 � 0.01 1.7e-05 (3,2,3,2) � 13.0
4 6 8 0,0,2 � 0.006 1.7e-05 (3,2,3,2) � 14.2
4 8 8 0,0,2 � 0.0042 1.3e-07 (3,2,3,2) � 15.2
6 6 4 0,0,1 � 0.044 0.036 (19,19) 0.39
6 8 4 0,0,1 � 0.017 0.0085 (19,19) 0.38
6 6 6 0,0,3 � 0.015 1.3e-04 (7,6,6,7,6,6) � 8.2
6 8 6 0,0,3 � 9.4e-3 3e-5 (7,6,6,7,6,6) � 8.2

We are therefore interested to test how this measure compares
to other signatures of topological order, such as the presence
of a nonzero Chern number for the ground-state manifold. A
prior study of the Laughlin state on lattices had shown that the
combined two-fold ground-state manifold has a Chern number
of 1, or 1/2 per state, up to a critical flux density of nc

φ � 0.4
(Ref. 10). We now study how the entanglement gap varies as
the flux density changes, by calculating entanglement spectra
for systems of constant N on lattices of different geometries.
The results, shown in Fig. 6, show a full agreement with
Ref. 10: For large U , we find that the entanglement gap also
closes at nc

φ � 0.4. However, while the Chern number jumps
instantaneously between integers, the entanglement gap can
capture how the topological protection of the Laughlin state is
gradually weakened and finally collapses.

B. Moore-Read state

We next considered the Moore-Read (MR) state at ν = 1. In
the continuum, as explained in Sec. III B, the three MR states
can be obtained from the Laughlin state by symmetrization.
On the lattice, the same scheme applies except that the
momentums are now defined modulo Kmax

y , and we use the
Laughlin states on the lattice as defined in Eqs. (6) through (8)
as the starting point.

Our numerical work on the lattice is based on the exact
diagonalization of the Hamiltonian (1), using three-body
contact interactions which are analogous to the continuum
case [i.e., choosing U = 0 and V/t = 1 in Eq. (1)]. Given
these parameters, we generally found that the ground state is
approximately three-fold degenerate and the sectors in which
the three ground states appear are given by the expected mo-
menta, subject to the folding rule (12). For geometries where
this rule is satisfied, we compute the particle entanglement
spectrum of the ground states’ total density matrix. As in the
Laughlin case, the particle entanglement spectrum is gapped
and the number of states below the gap is given by the one

predicted from the folding rule and the torus counting [see
Fig. 7(a)]. The results for the different systems we studied are
gathered in Table II.

These results show that it is theoretically possible to
obtain the Moore-Read phase on the lattice using three-body
contact interactions. Even though three-body interactions can
be realized for cold atoms using more elaborate experimental
settings,66,67 the most relevant interaction for bosons on a
lattice is the two-body hardcore interaction. Thus, we wonder
if the Moore-Read state can also be stabilized with this type of
interaction. In the continuum limit and in the lowest Landau-
level (LL) approximation, they are several numerical evidences
that such a phase can be stabilized.78–81 Given the presence of
LL mixing mixing in our model, we also establish to which
extent this mixing affects the stability of the Moore-Read state.
To answer these questions, we diagonalize the Hamiltonian
(1) with V = 0 at ν = 1. For small interaction strength U , the
energy spectrum exhibits the correct ground-state degeneracy
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and sectors. In addition, the entanglement spectra exhibit the
correct state counting, albeit with a smaller entanglement gap
than in the case of three-body interactions. A closer look at the
spectrum reveals, as displayed in Fig. 8, that the energy gap
and the ground-state energy splitting are of the same order:
While a fully realized MR phase should have a very small
spread to gap ratio, this is clearly not the case here.

We find that the gap closes for Uc � 1.25t , while the
spread between the ground states grows monotonically with U .
Hence, the spread to gap ratio is a rapidly increasing function
of U indicating how sensitive the topological degeneracy is
to the strength of two-body interactions. At the flux density
nφ = 1/6 shown in Fig. 8, the lowest Landau level is still
very narrow,13,69 so we interpret this strong suppression of
the gap as resulting from Landau-level mixing. Furthermore,
the single-particle gap between the lowest Landau level (LLL)
and second LL is about �sp � 1.68t at nφ = 1/6, which is
of the same order as the energy scale of interactions nUc at
the point Uc where the gap closes. We can conclude, at least
for small systems, that the Landau-level mixing resulting from
large two-body contact interactions tends to destroy the MR
phase.

Finally, we have computed the entanglement gap of the
total matrix density, taking the two lowest-energy state in the
Ky = 0 sector and the lowest in the Ky = N/2 sector even
when they were not the three lowest-energy eigenstates. For
reference, we also evaluate the overlap of these states with the

model MR states, as discussed above. The results, shown in
Fig. 9, are consistent with the previous conclusions: The phase
obtained at small U is most likely the MR phase, with large
overlaps at small U , but the phase is destroyed by increasing
the interaction strength.

VI. CONCLUSION

In this paper we have analyzed the bosonic fractional
quantum Hall states on lattices through the particle entan-
glement spectrum. These systems provide a well-controlled
environment away from the pure model states, which allows a
better understanding of the properties of particle entanglement
spectra (PES) in quantum Hall systems. We have focused on
the filling factors ν = 1

2 and ν = 1 where the Laughlin state
and the Moore-Read state should, respectively, emerge. In both
cases, the PES was able to discriminate the nature of the state.
This result is even more remarkable given that the size of the
Hilbert space, set by the number of particles and lattice sites
(rather than flux quanta), is exponentially larger than in the
continuum limit. Interestingly, the PES was able to give insight
about a competing Bose-Einstein condensate phase, which
we have associated with low-lying entanglement eigenstates
whose number is invariant under the number of particles in
the partition. We have also shown that the entanglement gap
collapse in the PES predicts a critical density of flux nc

φ below
which the Laughlin’s physics emerges; our value of nc

φ is in
agreement with a previous study based on Chern numbers. We
have used the PES to confirm the realization of a Moore-Read
state at ν = 1 in the presence of on-site two-body contact
interactions only. Furthermore, we have given evidence of
how Landau-level mixing arising from these two-body contact
interactions tends to destroy the bosonic MR state as its
magnitude is increased.
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39A. M. Läuchli and J. Schliemann, Phys. Rev. B 85, 054403 (2012).
40H. Yao and X.-L. Qi, Phys. Rev. Lett. 105, 080501 (2010).
41J. I. Cirac, D. Poilblanc, N. Schuch, and F. Verstraete, Phys. Rev. B

83, 245134 (2011).
42I. Peschel and M.-C. Chung, Europhys. Lett. 96, 50006 (2011).
43C.-Y. Huang and F.-L. Lin, Phys. Rev. B 84, 125110 (2011).

44J. Lou, S. Tanaka, H. Katsura, and N. Kawashima, Phys. Rev. B 84,
245128 (2011).

45J. Schliemann and A. M. Läuchli, arXiv:1205.0109.
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