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We study a rapidly rotating gas of unpolarized spin-1/2 ultracold fermions in the two-dimensional regime
when all atoms reside in the lowest Landau level. Due to the presence of the spin degree of freedom both
s-wave and p-wave interactions are allowed at ultralow temperatures. We investigate the phase diagram of this
system as a function of the filling factor in the lowest Landau level and in terms of the ratio between s- and
p-wave interaction strengths. We show that the presence of attractive interactions induces a wide regime of
phase separation with formation of maximally compact droplets that are either fully polarized or composed of
spin-singlets. In the regime with no phase separation, we give evidence for fractional quantum Hall states.
Most notably, we find two distinct singlet states at the filling �=2 /3 for different interactions. One of these
states is accounted for by the composite fermion theory, while the other one is a paired state for which we
identify two competing descriptions with different topological structures. This paired state may be an Abelian
liquid of composite spin-singlet Bose molecules with Laughlin correlations. Alternatively, it may be a known
non-Abelian paired state, indicated by good overlaps with the corresponding trial wave function. By fine tuning
of the scattering lengths it is possible to create the non-Abelian critical Haldane-Rezayi state for �=1 /2 and the
permanent state of Moore and Read for �=1. For purely repulsive interactions, we also find evidence for a
gapped Halperin state at �=2 /5.
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I. INTRODUCTION

Cold atomic gases are an ideal system for the study of
novel quantum phenomena, due to the increasingly versatile
experimental techniques available to control these systems.
Recently an intense activity focused onto the case of spin-1/2
fermions with attractive interactions. In the realm of ultralow
temperatures, the dominant process of interaction is s-wave
scattering which is allowed by the Pauli principle when col-
liding fermions are in a spin-singlet state. The strength of
this scattering can be tuned through Feshbach resonances by
applying a static external magnetic field. On one side of the
resonance there is no real bound state close to zero energy
while on the other side there are weakly bound diatomic
molecules. If we now consider a gas of atoms then the side
with no bound state will lead to a Bardeen-Cooper-Schrieffer
�BCS� superfluidity instability with formation of a ground
state with pairing correlations while the other side will lead
to Bose condensation of molecules. The crossover between
these two regimes has been the subject of many theoretical
condensed-matter studies—atomic physics experiments are
now able to probe this important regime. Superfluidity can
be observed in this system of fermions by imposing a rota-
tion to the gas. There is then occurrence of quantized vorti-
ces arranged in a regular lattice �1�. This is an interesting
parallel with atomic Bose gases which also display the Abri-
kosov lattice of vortices when set in rotation.

In the case of atomic Bose gases it is expected that if the
rotation is fast enough and the confinement along the rotation
axis is sufficiently strong, the gas will flatten and reach a
two-dimensional regime. There is then formation of Landau
energy levels familiar from the quantum mechanics of a par-
ticle in a magnetic field. When all bosons reside in the lowest

Landau level �LLL� there is formation of fractional quantum
Hall �FQH� states of the bosons after melting of the vortex
lattice �2–5�. It is thus a very natural question to investigate
what happens under similar circumstances to a gas of spin-
1/2 fermions. Rotation of the system translates into two ad-
ditional forces in the rotating frame: the centrifugal force and
the Coriolis force. In a trap with a harmonic confining po-
tential the restoring force is linear in distance from the axis
of rotation, as is the centrifugal force. For fast enough rota-
tion these forces may thus nearly compensate each other and
we are left with the Coriolis force which is formally equiva-
lent to a static external magnetic field applied on the neutral
atoms. Under these conditions, the two-dimensional regime
is very special since the kinetic energy is quenched and one-
particle energy levels form degenerate sets—the Landau lev-
els responsible for the appearance of the quantum Hall effect
in condensed-matter physics. At low enough temperatures all
particles will occupy the LLL and solely the interactions be-
tween them will determine the nature of the ground state:
there is no longer any competition between kinetic energy
and potential interaction energy. When there are only few
bosons per available quantum state in the LLL, correlated
liquid phases with special properties emerge, the so-called
fractional quantum Hall liquids. For spinless bosons interact-
ing via s-wave scattering, the filling factor 1/2 leads to a
ground state which is exactly given by the Laughlin wave
function �2�. At other filling factors there are other FQH
states, some that belong to the standard lore �4� and some
more exotic states �3�. If we now consider ultracold spin-1/2
fermions, which may, in principle, reach the same quantum
Hall regime, the Zeeman energy that lifts the degeneracy
between the two fermion species can be manipulated but in
this paper we focus specifically on the case of zero Zeeman
energy. In the context of the quantum Hall physics of elec-
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trons, this case can be realized only under very special cir-
cumstances such as large external hydrostatic pressure ap-
plied to the sample. It is known that even with complete spin
degeneracy, the electrons prefer to adopt a fully polarized
ground state at least for fractions like �=1 and �=1 /3. Ul-
tracold spin-1/2 fermions have interactions that are of a very
different nature compared to electrons in semiconductor het-
erostructures. Scattering of spin-1/2 fermions at ultralow
temperatures is normally dominated by s-wave processes and
p-wave scattering is suppressed. However manipulation of
Feshbach resonances can be used to boost p-wave scattering
up to the same order of magnitude of s-wave interactions in
cold gases of potassium �6–8� as well as lithium �9–11�. It is
thus physically relevant to explore the physics as a function
of the ratio of the s- and p-wave scattering lengths.

In this paper, motivated by experimental advances, we
investigate the quantum Hall physics of spin-1/2 ultracold
fermions. We concentrate on the balanced case with equal
populations of both spin states. In the LLL there are now two
relevant parameters: the filling factor and the ratio of s-wave
and p-wave scatterings. We stress that only the ratio is rel-
evant since in the absence of kinetic energy the overall en-
ergy scale factors out of the physics. The complete disap-
pearance of kinetic energy in the LLL leads to a wide regime
of phase separation if there is attraction between the atoms in
some allowed spin channel. The atomic system then prefers
to form a maximally compact droplet of spin zero if there is
s-wave attraction and a ferromagnetic droplet with maximal
spin when there is attraction in the p-wave channel. These
states have a very simple explicit form but they do not ex-
haust all the possibilities for the ground states of the system.
To characterize the quantum Hall states we use exact diago-
nalizations of the many-body problem in the spherical geom-
etry. Candidate quantum Hall liquids have a very definite
ratio of flux vs number of particles which depends on their
internal topological order and can be used as an identifying
signature. We find evidence for incompressible quantum Hall
states at the filling fraction �=2 /3. If the s-wave interaction
is repulsive enough there is formation of a singlet state
which can be described by standard composite fermion �CF�
construction. For weaker interactions in the s-wave channel
there is a transition toward a state which we tentatively de-
scribe as an Abelian paired state as envisioned by Halperin
�12� with singlet molecules forming a standard Bose-
Laughlin state at an effective filling factor �B=1 /6. However
this may not be the whole story since we also find very good
overlap with a non-Abelian paired state introduced by Ar-
donne et al. �13�. At �=2 /5, we identified a gapped spin-
singlet state described by a Halperin wave function �12�.
Finally we also show that there are critical points, i.e., gap-
less systems, at filling fractions �=1 and 1/2 that are de-
scribed by the non-Abelian Haldane-Rezayi �HR� state �14�
for �=1 /2 and the permanent state �15–17� for �=1.

In Sec. II we discuss the peculiarities of ultracold fermi-
ons with spin in the LLL in rotating systems. Our results for
the various filling factors are exposed in Sec. III. Conclu-
sions are given in Sec. IV.

II. INTERACTING ULTRACOLD FERMIONS WITH SPIN
IN THE LLL

We first discuss the one-body problem for a particle
trapped in an anisotropic rotating potential. We consider the
case when there is strong confinement along the z axis which
is also the rotation axis. The one-body Hamiltonian in the
rotating frame can be written as

HR =
1

2M
�p − M�ẑ � r�2 +

1

2
M�z

2z2 +
1

2
M���

2 − �2�r�
2 .

�1�

In this equation, M is the mass of the fermion, � is the
rotation velocity, �z is the characteristic trapping frequency
along the z axis, �� is the trapping frequency in the x-y
plane perpendicular to z, and the coordinates in the x-y plane
are r�

2 =x2+y2. We assume that the dynamics of the system is
effectively two dimensions, with the motion along the z di-
rection confined to the lowest eigenstate of the harmonic
confinement �z�exp�−z2 /2�z

2�, with �z=�� /M�z. The quan-
tum Hall regime may be recovered when ����. The Cori-
olis force, which is formally equivalent to the Lorentz force,
mimics a magnetic field B=2M�. The one-body eigenstates
are then given by the two-dimensional Landau levels: they
are a set of highly degenerate states with a spacing given by
the cyclotron frequency ��c=2��, their degeneracy being
proportional to the area of the system. The eigenfunctions of
the LLL are given by

�m�z� =
1

�2m+1�m!
zme−�z�2/4�0

2
, �2�

where z is the complex coordinate in the x-y plane, the length
scale is set by the “magnetic” length �0=�� /2M�, and m is
a positive integer. If we are not exactly at the critical rotation
velocity there will be a remaining harmonic potential. This
residual effect is not expected to affect states that are incom-
pressible, i.e., robust to density changes due to a bulk gap.
This is the case of the so-called fractional quantum Hall
states that we study in this paper.

In this work we focus on the case of two species of fer-
mions. This is the situation that is relevant to the study of the
Bose-Einstein condensate to BCS �BEC-BCS� crossover. We
will consider two degenerate species and treat them as spin-
1/2 fermions. Here degenerate means that the energy split-
ting between these states is much smaller than their interac-
tion energy. The “spin” that we use may have a complex
microscopic origin. For example, in 6Li in zero magnetic
field the low-lying states are a hyperfine doublet F=1 /2 and
a quartet F=3 /2. With a moderate field the ground state
becomes a triplet and the two low-lying states of this triplet
are of particular interest to create stable spin mixtures. No-
tably it is known that there is a pronounced Feshbach s-wave
resonance in the scattering between these two states. In ad-
dition there is a also a p-wave resonance between these
states. By tuning the magnetic field it is thus possible to have
some control of the relative scattering strength between
s-wave and p-wave interactions. We now show how one can
parametrize the interaction Hamiltonian in the LLL. It is well
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known that the two-body problem in the LLL is trivially
solvable for arbitrary rotationally invariant interactions and
that the eigenenergies are given by the set of so-called
Haldane pseudopotentials �18� Vm,

Vm =
��m�V�z���m	

��m��m	
, m 	 0, �3�

where V�z� is the two-dimensional interaction potential and
��z��zm exp�−�z�2 /8�0

2� is the relative particle eigenstate
with angular momentum m. The even values of m are rel-
evant to the spin singlet channel and the odd values to the
spin triplet channel. The s-wave �p-wave� scattering ampli-
tude is related to V0 �V1�. The interacting N-body problem is
then fully defined by the Hamiltonian,

H = 

m	0

Vm

i
j

Pij
�m�, �4�

where Pij
�m� projects the pair of particles i and j onto relative

angular momentum m. Neglecting scattering in higher partial
waves, the problem only involves V0 and V1 given by

V0 =� 2

�

�2

2M

as

�0
2�z

, V1 =� 2

�

�2

M

ap
3

�0
4�z

. �5�

Here as �ap� is the s-wave �p-wave� scattering length de-
duced from low-energy scattering limit and we have used
explicitly the fact that the wave function along z is the
Gaussian ground-state wave function of width �z. Note that
there is no explicit spin dependence in the interactions, it is
only through the Pauli principle that the spin degrees of free-
dom are interacting nontrivially. Since one can factor out an
overall energy scale the N-body problem in the LLL is thus
function only of the ratio V1 /V0. It is then convenient to
parametrize the interaction Hamiltonian as

H� = g0 cos �

i
j

Pij
�0� + g0 sin �


i
j

Pij
�1�, �6�

where g0 is the overall energy scale. The phase diagram can
be represented as a circle described by the angular variable �.

Our strategy is to perform exact diagonalizations of Eq.
�6� for a small number of fermions in the spherical geometry.
This kind of calculations pioneered by Haldane has proved
fruitful to find incompressible quantum Hall states. Technical
details can be found in the work of Fano et al. �19�. It is
convenient to switch to the equivalent magnetic language in
which vorticity is now magnetic flux. A sphere can be
pierced only by an integer number of flux quanta N�=2S and
the Landau levels can be classified according to their orbital
angular momentum. The LLL has momentum S and hence is
2S+1 times degenerate and is spanned by functions
uS+MvS−M, u=cos�� /2�e−i�/2, and v=sin �� /2�e+i�/2, where
M =−S¯ +S. There are again pseudopotential parameters as
in the infinite plane described above and only two of them
are relevant in our case,

V0 =
�2S + 1�2

S�4S + 1�
� 2

�

�2

2M

as

�0
2�z

, V1 =
�2S + 1�2

S�4S − 1�
� 2

�

�2

M

ap
3

�0
4�z

.

�7�

We consider the family of Hamiltonians H� on the sphere,
allowing a single parameter �. Many-body states on the
sphere are classified by their total angular momentum L and
their spin S. In order to search for incompressible quantum
states we diagonalize the Hamiltonians H� in the LLL for
finite systems with even numbers of particles N=2N↑=2N↓,
i.e., total spin Sz=0, at different flux N�. Candidates for in-
compressible states have full rotational invariance on the
sphere and can be distinguished by their angular momentum
L2=0. Such states form families defined by a specific rela-
tionship between flux and number of particles of the form
2S= �1 /��N−�, where the constant � is called the shift. This
shift—which is irrelevant in the thermodynamic limit—is
nevertheless a very useful tool to differentiate between states
having different internal structures.

We adopt the convention to measure energies in terms of
density corrected magnetic lengths �0�=�0

�2S� /N �20�. Note
that this leads to different finite-size scalings for the s- and
p-wave channels. We separate the factors determining the
finite-size scaling from the coupling constants gs and gp set-
ting the scale of interactions in the two scattering channels
we consider,

V0 �
�2S + 1�2

S�4S + 1�
�0�

2

�0
2 gs, V1 �

�2S + 1�2

S�4S − 1�
�0�

4

�0
4 gp. �8�

At a given number of particles N and filling factor �, we then
define the interaction Hamiltonian H� by setting gs
=cos���g0 and gp=sin���g0, thus defining the overall energy
scale g0.

III. PHASE SEPARATION

We start our discussion by some general remarks about
the phase diagram as a function of �. The quantum Hall
regime in solid-state physics, i.e., electrons interacting
through the Coulomb potential, corresponds to all Vm posi-
tive and decreases with m. This is realized in the upper right
quadrant of the circle in Fig. 1. We expect to recover the
physics of electronic fractional quantum Hall effect �FQHE�
with zero Zeeman energy there. Indeed the ratio V1 /V0
equals 1/2 for pure Coulomb interaction in the LLL �neglect-
ing the influence of layer width� and this means �
=atan�1 /2��0.46 close to � /7.

The possibility of attractive channels may lead to features
in the remainder of the phase diagram. In the upper left quad-
rant we have attraction in the s-wave spin-singlet channel
competing with repulsive p-wave interactions: hence there
will be an interplay between pairing and Laughlin-type cor-
relations.

If both s- and p-wave interactions are attractive, as is the
case for ��3� /2, one has to consider the possibility of
phase separation. Indeed in the LLL the kinetic energy is
frozen and is not an obstacle to clustering of particles in a
state of maximal density favored by attractive interactions. In
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the lower left quadrant it is thus favorable to make S=0 pairs
to maximize the V0 interaction and then to put all pairs as
close as possible to maximize V1. The state is then simply a
Slater determinant constructed by occupation of orbitals of
the LLL by singlet pairs. This state is a droplet with maxi-
mum local density and its local filling factor is thus �=2.
The occupation pattern is described in Fig. 2. This phenom-
enon happens for any number of particles and is always
clearly observed in our numerical studies at all filling factors.
The ground state is then a state with the maximal possible
angular momentum Ltot. The value is given by the maximum
possible projection of the angular momentum Ltot=Lz

max,
where Lz

max=2S+2�S−1�+2�S−2�+ ¯ +2�S+1−Ne /2�.
Finally, for 3� /2�2�, there is also phase separation

but now with formation of a fully ferromagnetic droplet as
pictured in Fig. 2. The local filling factor is now �=1. The
maximum value of the momentum is obtained by occupying
each orbital exactly once: Ltot=Lz

max where Lz
max=S+ �S−1�

+ �S−2�+ ¯ + �S+1−Ne�.

In contrast to incarnations of this state in electronic bi-
layer systems, there is no charging energy for unbalanced
spin populations in cold atomic gases since these systems are
neutral. We conclude that this phase has a strong susceptibil-
ity to rotations of the total spin out of the x-y plane. This
ferromagnetic phase supports skyrmion physics which pro-
vides opportunities for experimental probes of this phenom-
enology in atomic gases. In our finite system simulations, we
find that the transition between the �=2 and �=1 regimes is
not direct but proceeds via intermediate states. We note also
that these two regimes were also found to arise naturally as
the limiting two-dimensional behavior of �spin-�density
waves of rapidly rotating Fermi gases with s-wave interac-
tions in a three-dimensional regime for V0�0�
0� �21�.

IV. INCOMPRESSIBLE STATES

Due to the limitation of numerical calculations to a small
number of particles, we concentrate on the most prominent
filling fractions. With the presence of attraction in the s-wave
channel, it is expected that some kind of pairing will play a
role. Wave functions including pairing have been suggested
by Halperin �12� in the context of electronic systems. If two
fermions with spin-1/2 form a bound singlet pair, then this
fluid of pair will have charge two and thus feels a flux which
is twice the original flux. The number of pairs is also half the
number of fermions. Now these pairs can have Laughlin-type
correlations under appropriate circumstances. They will have
then a special flux number of particle relationship,

2 � 2S = mB�N

2
− 1 , �9�

where pairs form a Laughlin fluid with exponent mB
=2,4 , . . . with a Bose filling factor �B=1 /mB. The original
fermions then form a state with �=4 /mB which is a spin
singlet. The spectral signature of such a state is a singlet
ground state and it is natural to expect that the excited states
display a well-defined magnetoroton branch resulting from
the Laughlin nature of the Bose fluid. This branch should
thus extend up to angular momentum L=N /2, i.e., to the
number of �composite� bosons. Such Abelian paired states
are not thought to be realized in electronic systems even at
zero Zeeman energy. We expect that FQHE states describ-
able by a composite fermion construction are relevant to
small values of � close to the Coulomb value �C�� /7.

In Sec. IV A, we discuss the different quantum Hall states
that are realized for repulsive p-wave interactions at various
filling factors �. We have searched for systems with a singlet
ground state as a function of the number of particles and
flux. Due to the exponential growth of the size of the Hilbert
space, only a small set of values can be investigated in detail.
Strictly speaking, identification of a fractional quantum Hall
state requires finding a whole series of states with a definite
relation between number of particles and flux with a smooth
behavior of physical observables with system size increasing
toward the thermodynamic limit. Practically, one should
keep in mind that our assignments to quantum Hall fractions
are tentative. We are guided by the previously mentioned
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FIG. 1. �Color online� Schematic phase diagram for balanced
Fermi gases in the LLL: for 0�� or V1�0, several incom-
pressible quantum liquids can be realized. For V1
0, i.e.,
−��0, the sign of V0 determines whether the system is un-
stable to phase separation into a locally �=2 droplet �V0
0,
−��−�/2� or into a ferromagnetic state with locally �=1 �V0

�0,−� /2�0�. The dotted line locates the value �C�� /7 in
the phase diagram.

ν=2:

ν=1:

(a)

(b)

M = −S M = +S

FIG. 2. �Color online� The maximum density droplets that can
form in a system with attractive interactions. When there is attrac-
tion in both s- and p-wave channels it is best to make a spin-singlet
droplet of maximum density. �a� This is constructed by filling ex-
actly all orbitals with a singlet pair. �b� When there is attraction in
the p-wave channel but repulsion in the s-wave channel the maxi-
mum density droplet is now fully spin polarized, i.e., it is a local
�=1 quantum Hall ferromagnet. The state at Sz=0 as studied here is
the spin rotation of state �b� into the x-y plane.
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scheme of Abelian pairing �9� and by the standard composite
fermion construction.

A. Filling factor �=2 Õ3

We first discuss the possibility of observing the Abelian
paired state for mB=6. The reasoning above leads to a filling
factor 2/3 and a shift equal to −3. We find strong candidate
states for N=6, 8, and 10 in wide range of values of � that
includes the so-called hollow-core point �=� /2. In all cases
there is a clear gap between a L=0, S=0 ground state and
excited states, the lowest-lying excited states having the ex-
pected structure of a magnetoroton branch extending up to
L=N /2 and having S=0, i.e., they are made of excitations of
unbroken singlet pairs. This is most clearly seen in the center
of the gapped phase around ��� /2. However since there is
no available explicit simple wave function for the Abelian
paired state we cannot perform any overlap calculation. For
large values of � these states are killed by a collapse toward
phase separated maximum density droplets. The situation is
more interesting for small values of �. Here we find a tran-
sition with a collapse of the gap for ��0.2� beyond which
excited states are nearly degenerate. This transition appears
as a rapid crossover as a function of �. For smaller values of
� we instead observe another series of states with a shift
equal to −1, and this is exactly what we expect from the
composite fermion construction which known to be relevant
for Coulomb interactions. In the realm of electrons there is a
quantum Hall state at �=2 /3 which is fully spin polarized
and is simply the particle-hole conjugate of the celebrated
Laughlin state at �=1 /3. However it has been observed
�22–24� that reduction in the Zeeman energy leads to the
disappearance of this state and formation of a spin-singlet
state with the same filling. This state can be explained
straightforwardly in the composite fermion construction with
spin �25,26�. In this scheme the CFs exactly fill the effective
lowest Landau level with one singlet pair for each available
orbital. One has thus 2��2S��+1�=N, where 2S� is the re-
duced flux felt by the CFs. To reach total filling �=2 /3 this
effective flux is negative and given by 2S�=2S−2�N−1�.
Hence this series of S=0 states has 2S= �3 /2�N−1. For the
case of electrons with Coulomb interactions and zero Zee-
man energy, it has been shown that CF wave functions con-
structed from this series have extremely good overlap with
the numerically obtained ground states �the overlaps are
0.998 for N=8 and 0.998 96 for N=6 from Ref. �25��. We
have computed the overlap between the Coulomb ground
state and the ground state of the family of Hamiltonians in-
dexed by � and found that the overlap rises up to 0.9996 for
�=0.025�. It is extremely close to unity in the region where
V0 is larger than V1: this means that the physics can be de-
scribed by the composite fermion scheme.

Concerning the state at shift −3, we note that there is
another interesting candidate �13� which is a paired state and
also a spin singlet. Its wave function is given by

�NASS = Pf� 1

zi − zj
�

i
j

�zi
↑ − zj

↑�2�
i
j

�zi
↓ − zj

↓�2�
i,j

�zi
↑ − zj

↓� .

�10�

In this equation the zi’s stand for all particle coordinates and
zi
↑ ,zi

↓ are the coordinates of the two spin components �this

notation is a shorthand for the full wave function with both
spin and space coordinates; it is standard technology to re-
construct the complete state from this notation�. The Pfaffian
of an antisymmetric matrix is defined as Pf�Aij�
=A�A12A34. . .� with A denoting antisymmetrization.

State �10� state is known to exhibit spin-charge separa-
tion: the fundamental excitations are spinons with charge
zero and spin 1/2 and spinless holons with charge �1 /3. The
braid statistics of these quasiparticles is non-Abelian; its
properties have been investigated by Ardonne et al. �13�. The
non-Abelian spin-singlet state �NASS can be constructed as
the unique ground state of an appropriate Hamiltonian com-
posed of �two-, three-, and four-body� hardcore interactions
and the total spin S2. �This Hamiltonian derives from the
corresponding bosonic state �b=�NASS /�1, which is ob-
tained as the ground state of a simple three-body contact
interaction with an additional S2 term �with �1, the wave
function for a filled Landau level�.� We have computed the
overlap between the candidate state obtained in this manner
and the exact ground state of our model Hamiltonians. Our
results are displayed in the lower panel of Fig. 3 for up to
N=12 electrons. The overlap is extremely high in the regime
where we observe evidence for a gapped state. For N=14 at
the point �=� /2 the overlap is still as large as 0.713 98. It is
not clear yet if this non-Abelian state has the same excitation
structure that we guessed for Abelian pairing.

The paired character of these states is clear if we look at
the correlation function g�r�. The Pauli principle requires
that for same spin projection this correlation goes to zero for
zero separation: g↓↓�r→0�→0 and g↑↑�r→0�→0. However
it does not require that the opposite-spin correlations go to
zero. In composite fermion states it is known that g↑↓ is very
small albeit not zero at r=0. On the contrary when we
weaken V0 we observe a large increase in g↑↓�0� as was first
noted by Haldane and Rezayi �14� �see Fig. 4�. In this con-

0

0.5

1

∆
[u

ni
ts

of
g 0

] N=8
N=10

0 0.2 0.4 0.6 0.8 1
θ / π

0

0.5

1

|<
Ψ

ex
ac

t|Ψ
s=

0

pa
ir

ed
>

|2 N=12

ν=2/3
2S=3/2N-3

FIG. 3. �Color online� Top panel: excitation gaps between the
ground state and the first-excited state as a function of parameter �
for sizes N=8 and 10. The solid lines are computed for the flux
2S= �3 /2�N−3 as expected for an Abelian paired state, with filling
factor �=2 /3. This state is destroyed for �0.2� and replaced by
the composite fermion state with S=0 and filling 2/3 with shift
2S= �3 /2�N−1 as shown with dashed lines. Energies are measured
in terms of the overall energy scale g0. Lower panel: the overlap
between the exact ground state at shift −3 and the non-Abelian state
constructed from the Halperin �221� state times a Pfaffian factor.
The agreement is very good within the gapped phase.
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text, we also note that pairing of ultracold fermions was
found to be relevant for fermions at filling factor �=2 inter-
acting only in the s-wave channel: this system supports a
paired state of charge-2 bosons �27�.

Finally we note that there was a related numerical study
�28� of electrons at filling �=2 /3 in the context of bilayer
systems for which the layer index plays the role of a pseu-
dospin. The interlayer and intralayer Coulomb interactions
are different from our case. While the study �28� gives evi-
dence for the �=2 /3 spin-singlet composite fermion state,
there is also evidence for stability of a decoupled state of
type �330� in Halperin notation in some part of the phase
diagram. Here, in the ultracold atom system, we find that this
state has always low overlap with the ground state.

B. Filling factor �=1

At filling factor unity there is a possibility that the system
forms the fully aligned ferromagnetic state with an occu-
pancy probability of one for all orbitals in the LLL. The
wave function is then given by products of Vandermonde
determinant factors,

�111 = �
i
j

�zi
↑ − zj

↑��
i
j

�zi
↓ − zj

↓��
i,j

�zi
↑ − zj

↓� , �11�

where we have omitted the overall Gaussian factor. The no-
tation �111 stands for the powers appearing in the various
Jastrow factors and was introduced by Halperin in his work
on multicomponent systems �12�. This state, which is the
droplet state that always appears in the lowest right-hand part
of the phase diagram, has shift �=1 on the sphere. In the
zero Zeeman energy limit of the Coulomb problem it is well
known that adding or removing one quantum of flux leads to
the formation of a skyrmion �29,30� which has spin zero.

This means that there are spin-0 skyrmion states at flux 2S
=N−2 in the neighborhood of �=�C corresponding to the
Coulomb problem.

The Abelian pairing scheme also suggests that there may
be a series of incompressible states for 2S=N−2 by forma-
tion of a Bose-Laughlin fluid with mB=4. However, we do
not consistently find a nonzero gap over a wide range of
values of �, as in the case of �=2 /3 �see Fig. 5�. While there
is a quite clear gap above a singlet ground state for the sys-
tems with N=8 and N=14, the intermediate systems with
N=10 and N=12 have a more complicated behavior where
the gap drops to zero at ���. We interpret these findings as
the apparition of a probably compressible state beyond �
�0.17� which replaces the ferromagnetic droplet state men-
tioned in Sec. III. However, the data would also be consistent
with the existence of an intervening gapped phase in the
window 0.17����0.35�. An interesting phenomenon is
observed at the point where the transition from the ferromag-
netic phase occurs: Read and Rezayi �17� constructed a wave
function called the permanent which has exactly the same
shift �=2 and is given by

�perm = per� 1

zi
↑ − zj

↓�111, �12�

where “per” stands for the permanent. This state is con-
structed from a conformal field theory which is nonunitary
�15,16� and is thus expected to be critical �31�. Read and
Rezayi �17� proposed that this state should occur at the phase
boundary of a ferromagnet. The relationship with the mag-
netic instabilities has been explored in more detail in Green’s
Ph.D. thesis �32�. We have thus computed the overlap be-
tween the permanent state Eq. �12� and the ground state of
our model Hamiltonian �see Fig. 6 as a function of ��. We
find that right at the transition point seen in the gap, the
overlap rises to values extremely close to unity: the maxi-
mum overlap ranges from 0.998�3� for N=8 to 0.99�1� for
N=14. This high overlap we show for the permanent state
right where the gap of an adjacent ferromagnetic phases col-
lapses gives numerical support for the idea that the perma-
nent state is right at the phase termination of a ferromagnet.

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

g(
r)

g↑↑
g↑↓

0 2 4 6 8
r [ units of l

0
]

0

0.1

0.2

0.3

ν=1/2, N=8

ν=2/3, N=10

ν=1, N=12

FIG. 4. �Color online� Correlation functions as a function of
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singlet ground states of the hollow-core Hamiltonian �=� /2 �only
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FIG. 5. �Color online� Neutral excitation gaps of the spin-singlet
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suggests that the gap may survive in the thermodynamic limit.
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By analogy with the work of Green �32�, it is likely that the
phase beyond the permanent has helical order, but our small
systems do not allow us to analyze this in detail.

C. Filling factor �=1 Õ2

The problem of the nature of Coulomb ground state at �
=1 /2 has been of much interest in electronic systems since
there is evidence for an incompressible quantum Hall state in
the second Landau level at �=2+1 /2. At the present time,
the best candidate for describing the FQHE of this state is the
non-Abelian Moore-Read state �15,33�. Historically Haldane
and Rezayi �14� introduced a candidate wave function which
is a spin singlet,

�HR = det� 1

�zi
↑ − zj

↓�2�
i
j

�zi − zj�2, �13�

where the product in the Jastrow factor runs over all particle
indices irrespective of the spin projection. The HR state at
�=1 /2 occurs for N�=2N−4 on the sphere and is the exact
ground state of the simplest possible interaction involving
both spin species—pure p-wave interactions, also known as
the hollow-core model �HCM� �14�: in our language this
corresponds to �=� /2. Since it can be derived from a non-
unitary conformal field theory it is presumably gapless
�31,34�. This is what we find form our numerical studies at
�=� /2 �see Fig. 7�. Extrapolation along this series of states
is compatible with zero gap �even though a small but finite
gap cannot be excluded�. The same shift can also be consid-
ered as candidate for Abelian paired states with mB=8. How-
ever, as in the case of �=1 we do not find evidence for an
extended gapped phase. Neutral gaps are displayed in Fig. 8.
The finite-size gap does not peak for pure p-wave interac-
tions as for the other filling factors in this family of states.
Rather, there is a two-peak structure which is indicative of
the presence of several phases. The knowledge of the HR
critical point right at �=� /2 even suggests that there may be

an extended critical region but our limited data do not allow
a firm conclusion. This is left for future work.

D. Filling factor �=2 Õ5

The Hamiltonian H� yields precisely the Halperin wave
function �332 �analogous to Eq. �11�� with shift N�=5 /2N
−3 as its exact zero-energy ground state in the entire sector
0���� /2: for positive pseudopotential coefficients V0 and
V1, a zero-energy state of maximum density is obtained if
particles with same spin have a relative angular momentum
mrel	0 and particles with different spin have mrel	1. The
Halperin state �332 is the maximum density state with proper
symmetries that satisfies these requirements. The nature of
its excitations however depends on �. For instance, at N
=10 we find that the lowest excited state has spin S=2 for
�0.3� while it becomes a spin singlet at larger �. At the
HCM point, the HR state at �=1 /2 instead becomes the
maximum density state with E=0. From the construction of
the Halperin state, we expect the gap to be determined ap-
proximately by the smallest value of V0 and V1, with the
lowest energy excitation breaking either condition on the
relative angular momentum. Indeed, numerics show a linear
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behavior of the gap close to �=0 and �=� /2 �see Fig. 9�.
For larger �, the spectrum at �=2 /5 is found to be gapless.
We conjecture that there are no incompressible states with
��1 /2 for the interval � /2����.

V. CONCLUSIONS

We have studied the possible quantum Hall states that
may be realized with ultracold fermionic atoms of spin 1/2.
This requires first to be able to put all atoms in the LLL, for
example, by rotation of the system at low enough tempera-
tures. Manipulation of the relative strengths of the scattering
lengths allows in principle to probe regimes that are inacces-
sible to electronic systems. When there are attractive inter-
actions in the p-wave channel we find that there is phase
separation. The atoms will then form a maximally compact
droplet in the presence of the remaining trapping potential.
The most interesting case is reached when the p-wave scat-
tering is repulsive and larger than the s-wave scattering.
There is then the possibility of paired phases adiabatically
connected to a Bose-Laughlin fluid of spin-singlet pairs of

atoms. In principle such phases may be strongly or weakly
paired. We have shown that a paired state is likely to exist at
filling factor �=2 /3 for an extended range of parameters.
When the interaction in the s-wave channel is either weakly
repulsive or attractive there is a presumable gapped phase at
shift −3. It has all the spectroscopic signatures we expect
from a strongly paired state: there is a magnetoroton branch
extending up to N /2 values of the angular momentum. We
have also shown that this state has a very good overlap with
a �weakly� paired non-Abelian spin-singlet state which was
derived from the �221� Halperin state in a construction by
Ardonne et al. �13�.

Fine tuning the scattering properties allows us to reach a
region with Coulomb-type interactions where incompressible
FQH states are explained readily by the composite fermion
picture. There is evidence from our studies for an incom-
pressible state at filling factor �=2 /5 that is explained by
wave function originally proposed by Halperin. We have
shown also that there are interesting critical states that are
already known from the electronic world that can be reached
at some special points in our phase diagram. These are the
so-called Haldane-Rezayi �14� and permanent state. All these
findings give strong motivations to establish and refine ex-
perimental techniques that allow us to create and manipulate
ultracold gases in the LLL regime.
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