

The modern day blacksmith

Gareth Conduit

Theory of Condensed Matter group

Train from **Sparse** datasets

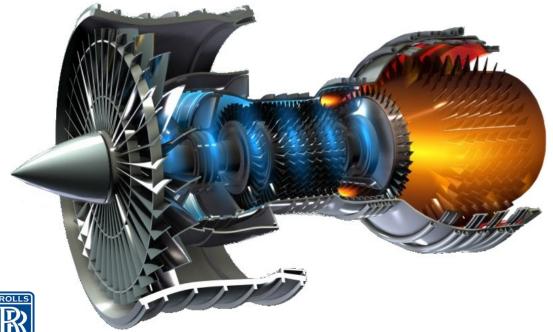
Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

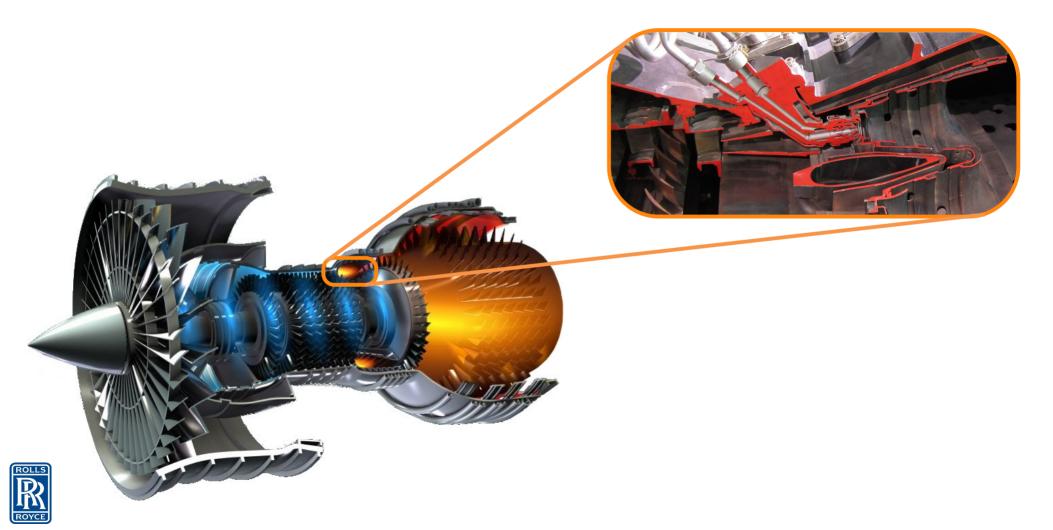
Generic with proven applications in materials discovery and drug design

# Schematic of a jet engine

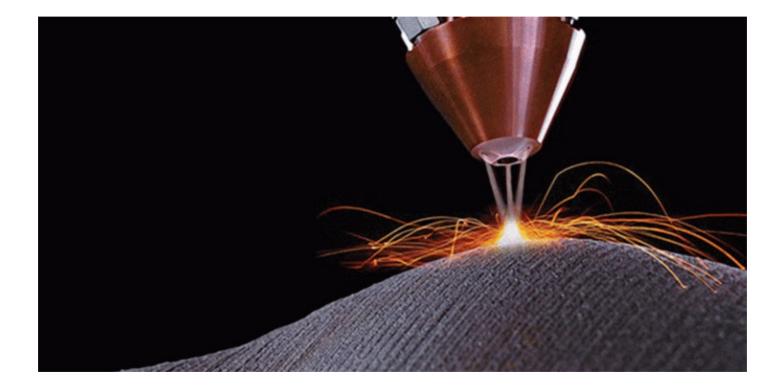




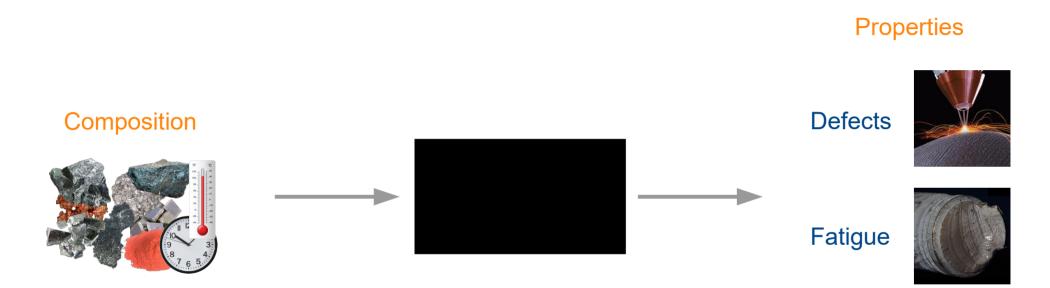
# Combustor in a jet engine



# Direct laser deposition requires new alloys



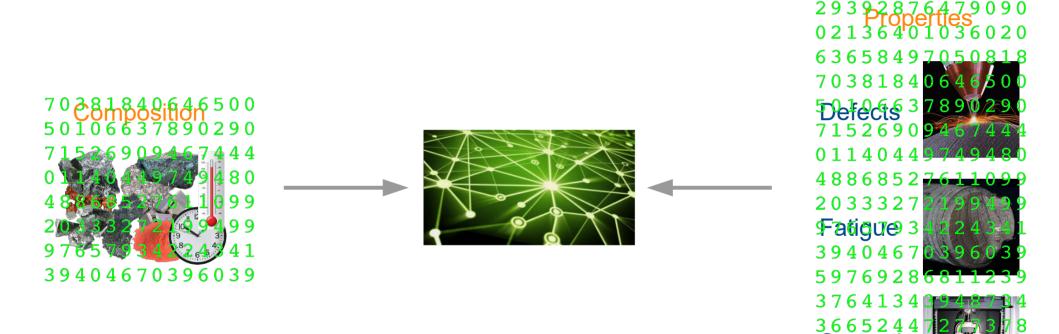
# A posteriori black box machine learning for materials design





Strength

# Train the *a posteriori* machine learning

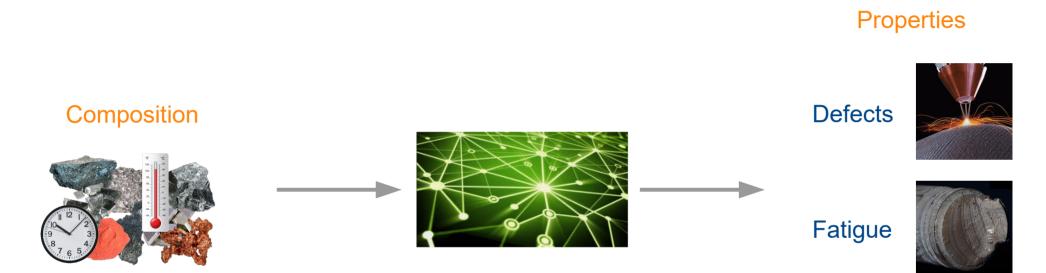


Strength8

80555606

983443994881

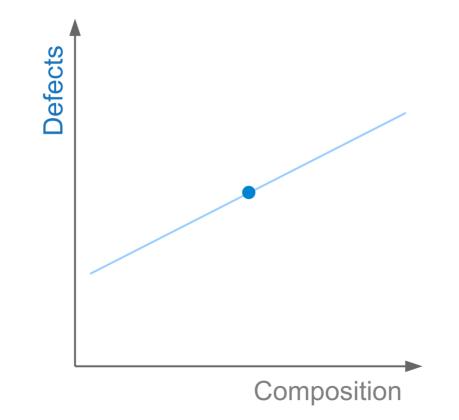
# A posteriori machine learning predicts material properties



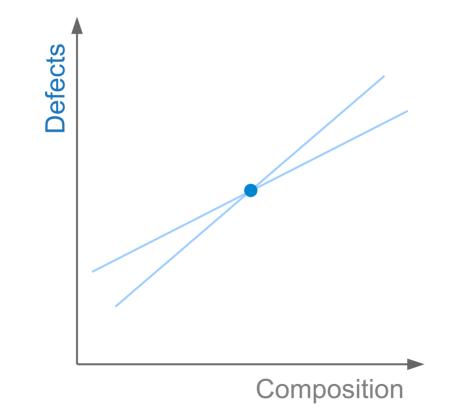


Strength

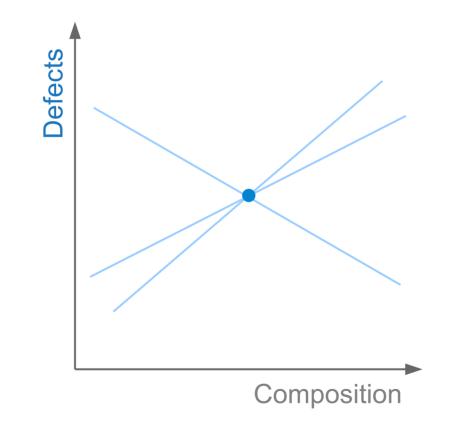
# One point cannot define a straight line



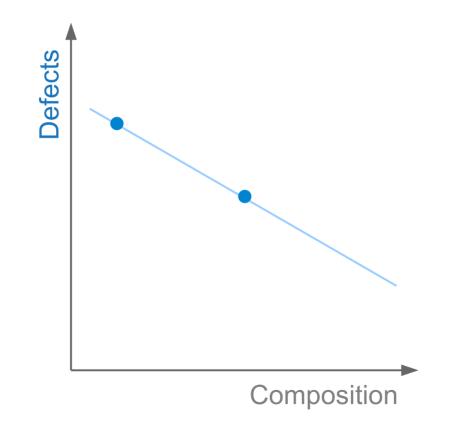
# One point cannot define a straight line



# One point cannot define a straight line



## Need at least two points to define a straight line



## Data available to model defect density

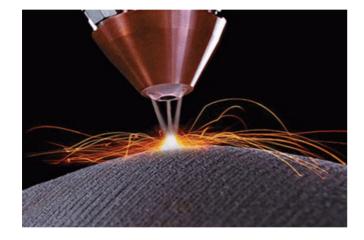


Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

# Neural networks for materials design

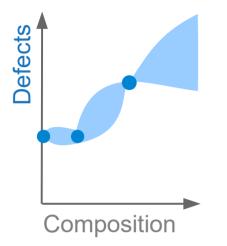




#### Laser



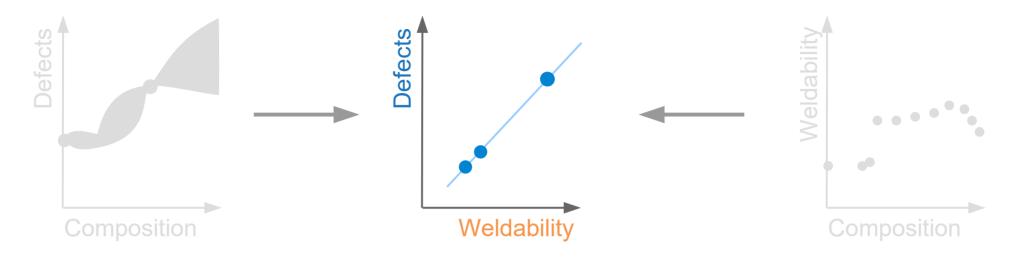
# Insufficient data for processability



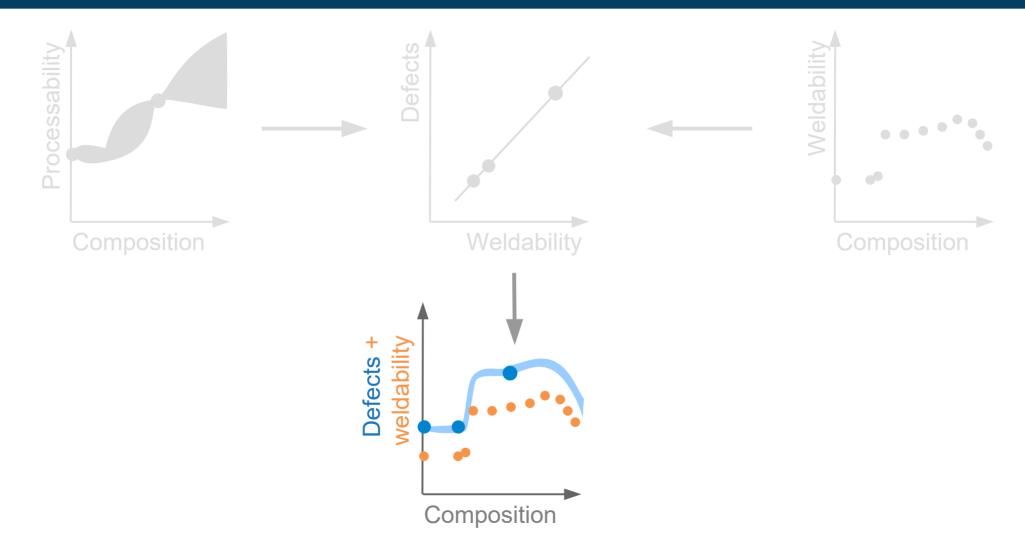
## Welding is analogous to direct laser deposition



# Simple processability-welding relationship



### Merging properties with the neural network



# First predict weldability

#### 1000 entries



#### Use 1000 weldability entries to understand complex composition $\rightarrow$ weldability model

# Use weldability to predict defects formed

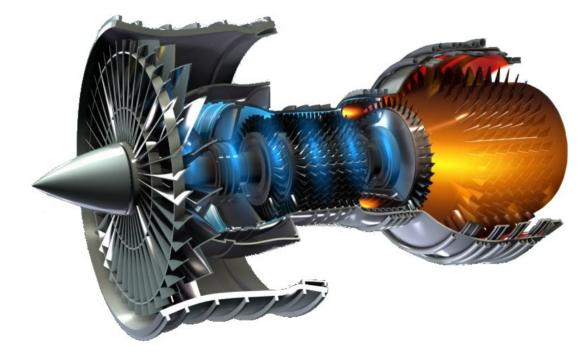


Use 1000 weldability entries to model complex composition  $\rightarrow$  weldability

10 defects entries capture the simple weldability  $\rightarrow$  defect relationship

Two interpolations give composition → defects extrapolation

# Schematic of a jet engine



Elemental cost < 25 \$kg<sup>-1</sup> Density < 8500 kgm<sup>-3</sup> v' content < 25 wt% Oxidation resistance < 0.3 mgcm<sup>-2</sup> Defects < 0.15% defects Phase stability > 99.0 wt% y' solvus >  $1000^{\circ}C$ Thermal resistance >  $0.04 \text{ KO}^{-1}\text{m}^{-3}$ Yield stress at 900°C > 200 MPa Tensile strength at 900°C > 300 MPa Tensile elongation at  $700^{\circ}C > 8\%$ 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10<sup>5</sup> cycles

# Composition







Co 4%





W 1.2%



Zr 0.05%





AI 2.9%







B 0.01%



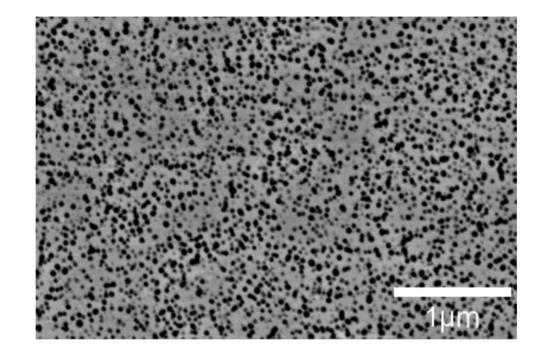
Ni



Expose 0.8

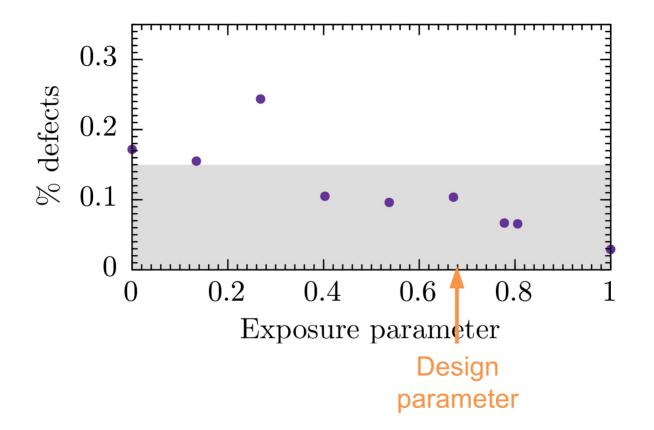






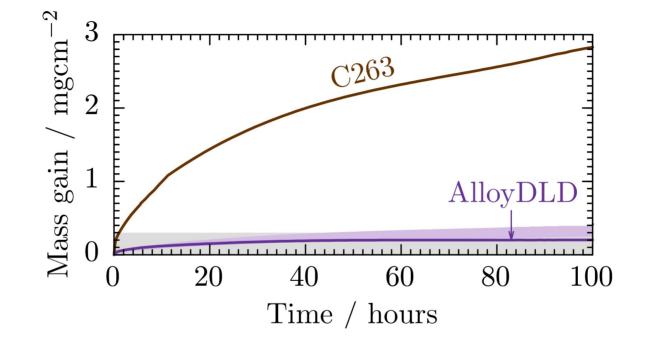


# Testing the defect density





### Testing the oxidation resistance

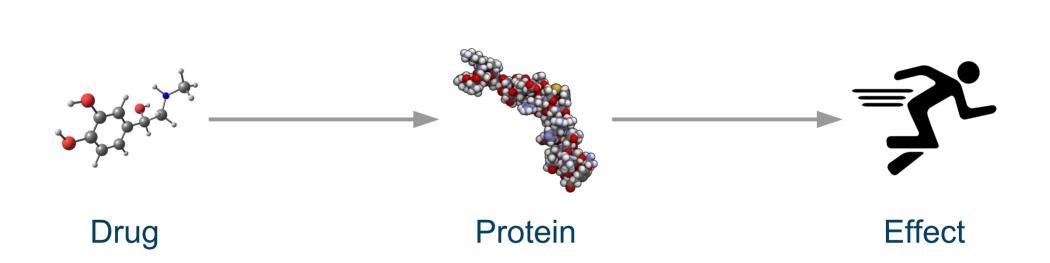




## Printing components for an engine

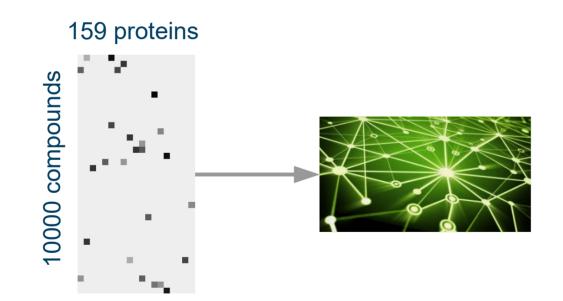






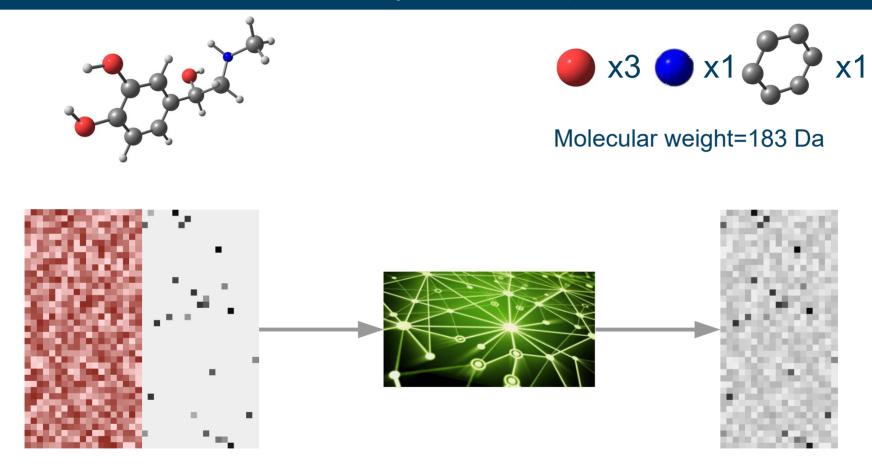
#### Novartis dataset to benchmark machine learning

159 kinase proteins, 10000 compounds, data 5% complete



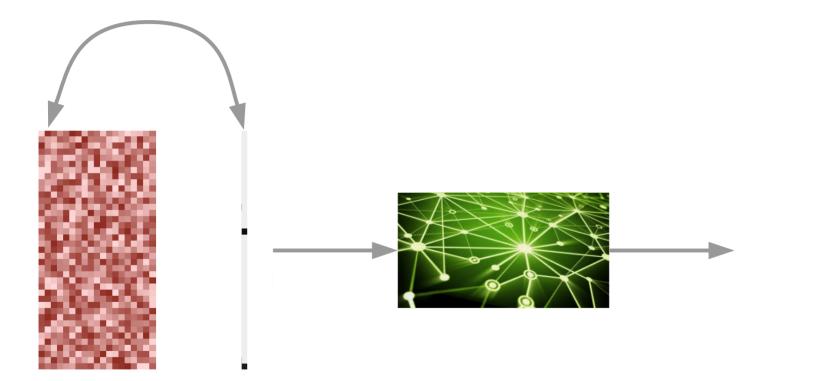
Imputation of Assay Bioactivity Data using Deep Learning Journal of Chemical Information and Modeling, 59, 1197 (2019)

#### Quantitative structure-activity relationships



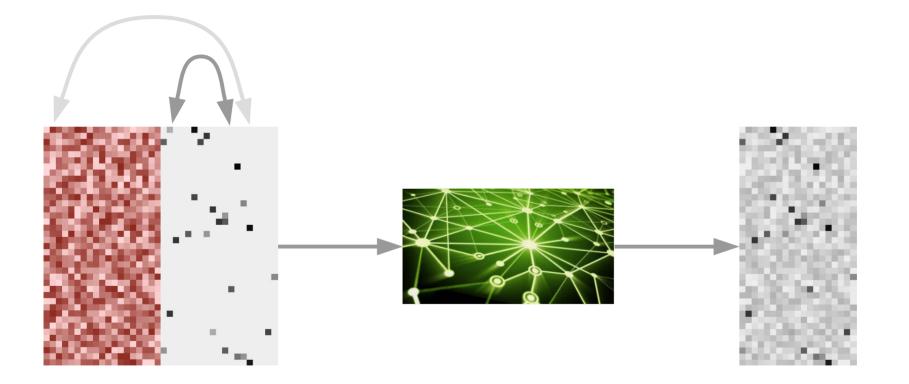
Imputation of Assay Bioactivity Data using Deep Learning Journal of Chemical Information and Modeling, 59, 1197 (2019)

#### Quantitative structure-activity relationships

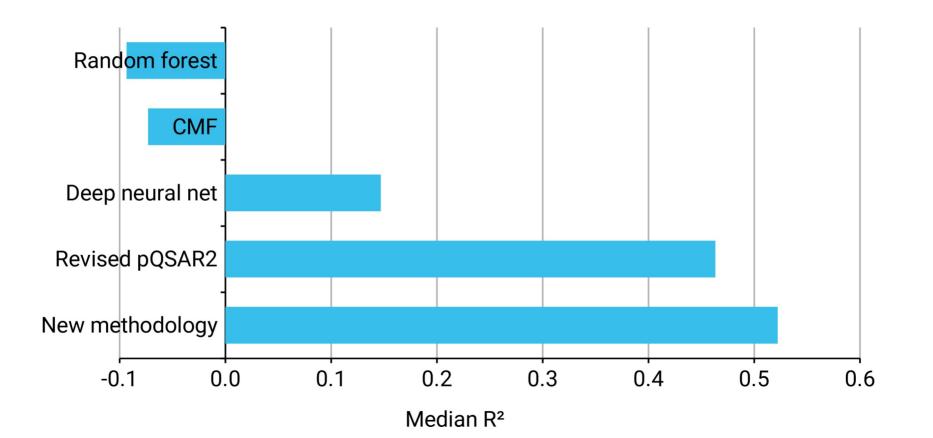


Imputation of Assay Bioactivity Data using Deep Learning Journal of Chemical Information and Modeling, 59, 1197 (2019)

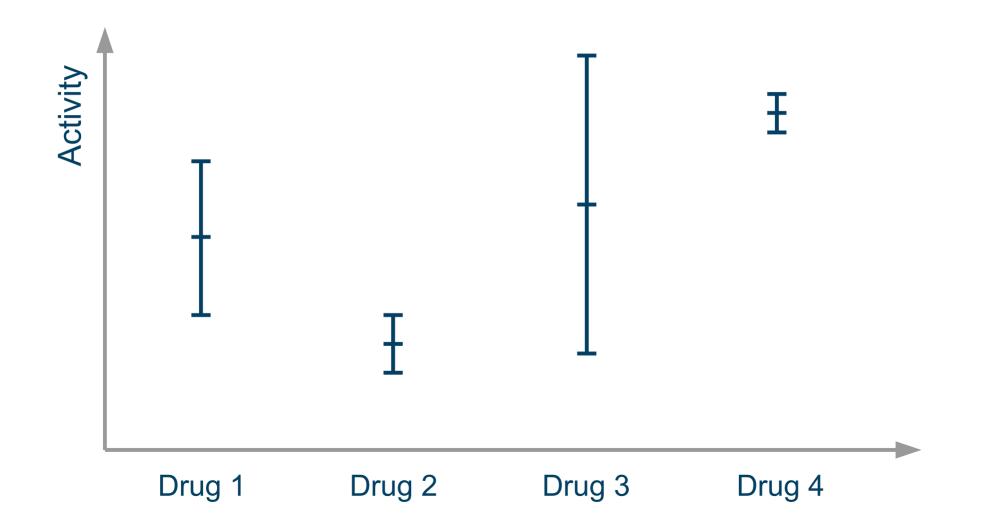
### Exploit protein-protein correlations



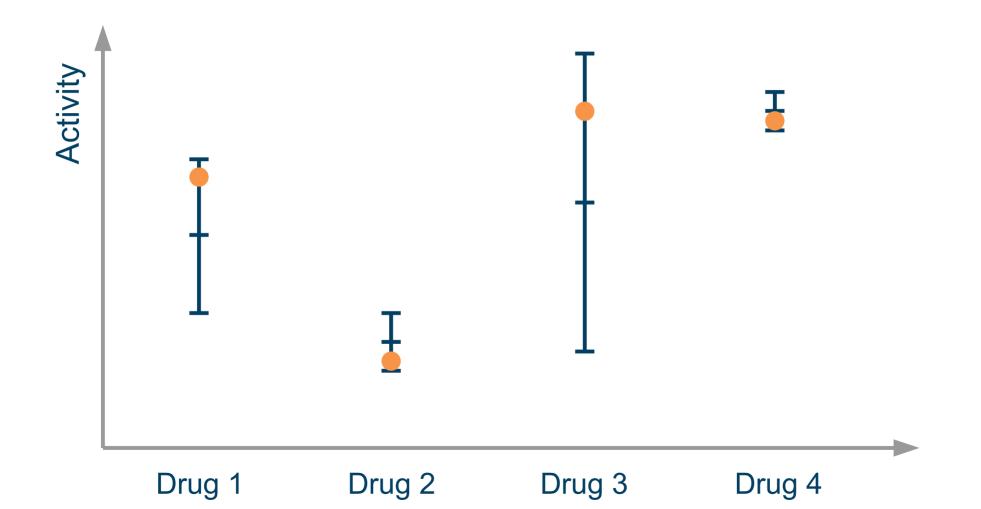
Imputation of Assay Bioactivity Data using Deep Learning Journal of Chemical Information and Modeling, 59, 1197 (2019)



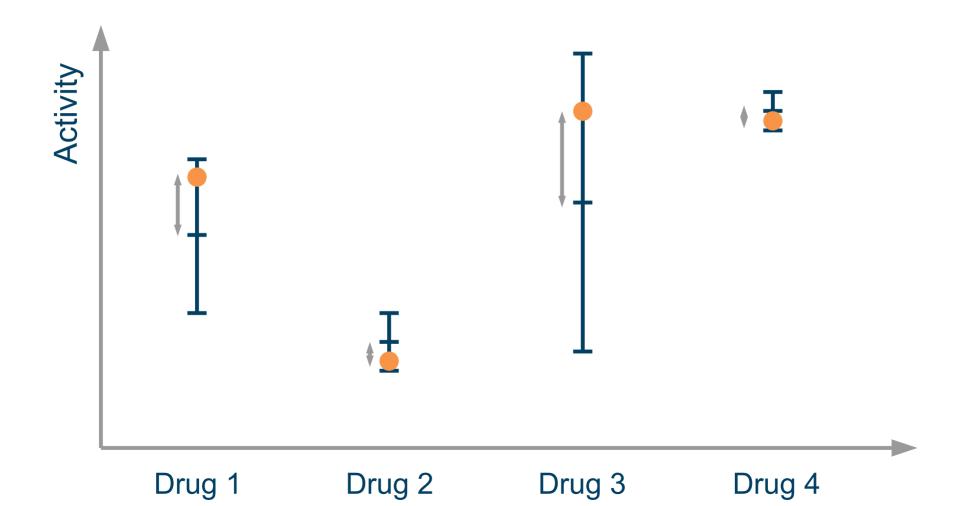
# Predictions have an uncertainty



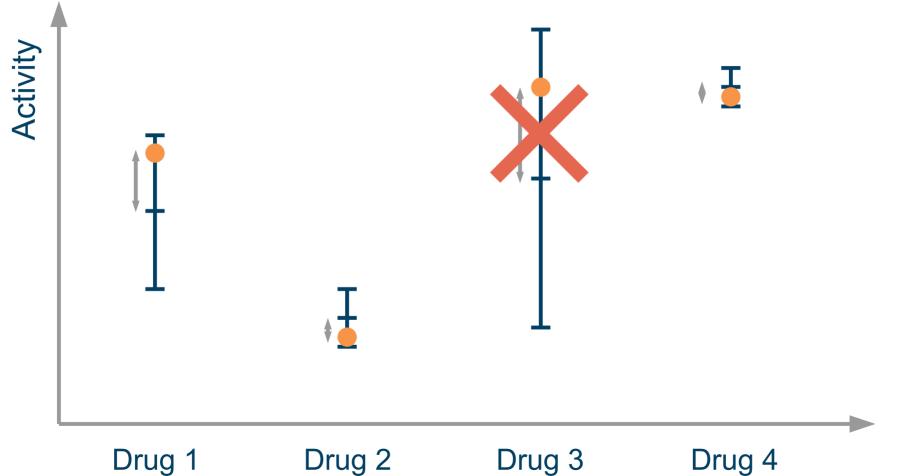
### Validation data typically within one standard deviation



#### $R^2$ metric calculated with difference from mean



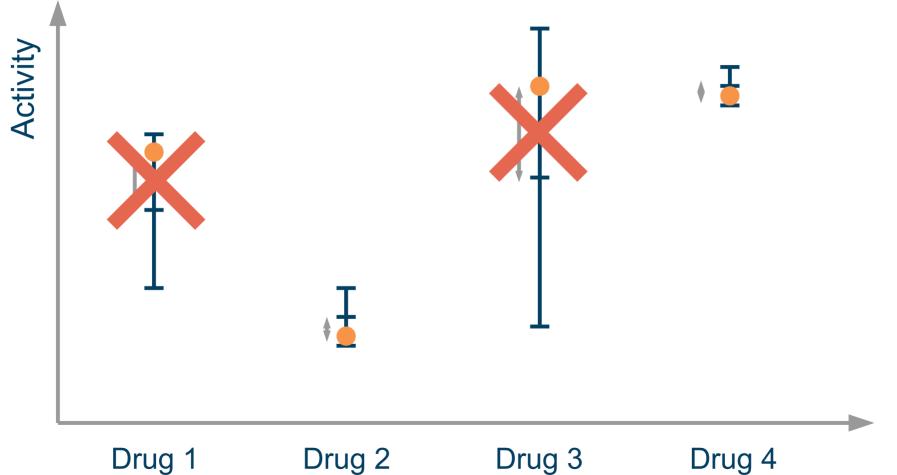
#### Impute 75% of data with smallest uncertainty



Drug 3



#### Impute 50% of data with smallest uncertainty

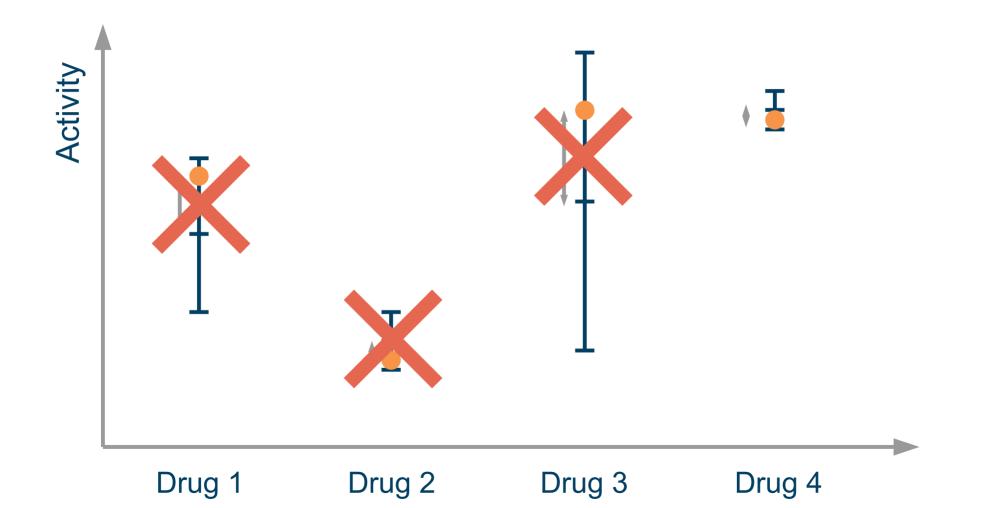


Drug 2





## Impute 25% of data with smallest uncertainty



# Improved performance by exploiting uncertainty



#### Different drugs can treat the same ailment









#### Open Source Malaria contest

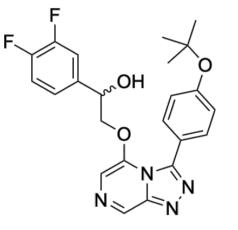




#### Focus on compounds with low uncertainty



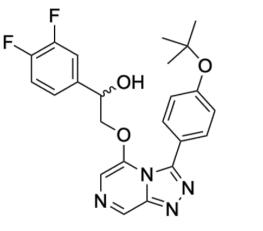
#### Open Source Malaria experimental validation

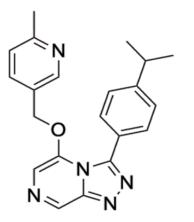


Irwin, Whitehead, Wade, Segall, Conduit

0.647 µM

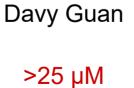
### Open Source Malaria other compounds

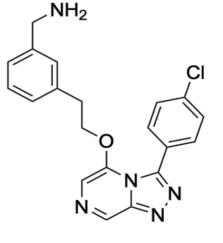


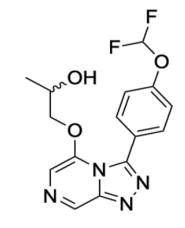


Irwin, Whitehead, Wade, Segall, Conduit

0.647 µM







Exscientia

Molomics

10.9 μM >25 μM



Alchemite Analytics<sup>™</sup> platform for materials and chemicals with Intellegens released in September 2020



Machine learning tool embedded into Cerella<sup>™</sup> released in October 2020

**Ansys** / GRANTA Integrate machine learning into Granta MI<sup>™</sup>

Merge different experimental quantities and computer simulations into a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Designed experimentally verified drug in Open Source Malaria competition

Taken to market through startup Intellegens