

The modern day blacksmith

Gareth Conduit

Theory of Condensed Matter group

- Train from **Sparse** datasets
- Merge simulations, physical laws, and experimental data
- Reduce the need for expensive experimental development
- Accelerate materials and drugs discovery
- Generic with proven applications in materials discovery and drug design

Schematic of a jet engine

Combustor in a jet engine

Direct laser deposition requires new alloys

Laser

Electricity

Insufficient data for processability

Welding is analogous to direct laser deposition

Simple processability-welding relationship

Merging properties with the neural network

Filling in missing values

Filling in missing values

Pass through present value

Second pass to fill in missing values

Schematic of a jet engine

Target properties

Elemental cost < 25 \$kg⁻¹ Density < 8500 kgm⁻³ y' content < 25 wt% Oxidation resistance $< 0.3 \text{ mgcm}^{-2}$ Processability < 0.15% defects Phase stability > 99.0 wt% y' solvus $> 1000^{\circ}C$ Thermal resistance > 0.04 K Ω^{-1} m⁻³ Yield stress at 900°C > 200 MPa Tensile strength at 900°C > 300 MPa Tensile elongation at $700^{\circ}C > 8\%$ 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10⁵ cycles

Composition

Co: 4%

AI: 2.9%

B: 0.01%

1

Expose 0.8 *T*HT 1300°C

Microstructure

Testing the processability: horizontal printing

Testing the processability: horizontal printing

Testing the oxidation resistance

Printing components for an engine

Underlying neural network

Neural network of multiple variables

$$y = D + C \frac{\vec{A} \cdot \vec{x} + B}{|\vec{A} \cdot \vec{x} + B| + |C|}$$

Taylor expand the neural network

$$y = D + C \frac{\vec{A} \cdot \vec{x} + B}{|\vec{A} \cdot \vec{x} + B| + |C|}$$
$$= \begin{cases} D + \vec{A} \cdot \vec{x} + B & |\vec{A} \cdot \vec{x} + B| \ll |C| \\ D + C \operatorname{sign}(\vec{A} \cdot \vec{x} + B) & |\vec{A} \cdot \vec{x} + B| \gg |C| \end{cases}$$

Physical formulae with multiplication

$$\mu = \frac{\tau_{i}}{3 \sigma_{y}} \qquad \kappa = \frac{6 E_{d} h \sigma_{d}}{E_{s} H^{2}} \qquad i_{L} = \frac{ZFDC}{\delta}$$
$$E = \frac{1}{2} kx^{2} \qquad \sigma = \frac{3FL}{2 b d^{2}}$$

V = IR

 $PV = nk_{\rm B}T$

 $\rho = \frac{AR}{I}$

 $\lambda = \left(\frac{m}{ne^2\mu_0}\right)^{1/2}$

Physical formulae with addition and multiplication

$$\mu = \frac{\tau_{i}}{3\sigma_{y}} \qquad \kappa = \frac{6E_{d}'h\sigma_{d}}{E_{s}'H^{2}} \qquad i_{L} = \frac{ZFDC}{\delta}$$

$$E = \frac{1}{2}kx^{2} \qquad \sigma = \frac{3FL}{2bd^{2}} \qquad \omega = \left(\frac{k(m_{1}+m_{2})}{m_{1}m_{2}}\right)^{1/2}$$

$$i_{A} = i_{0}\exp\left(\frac{azF\eta}{RT}\right) \qquad V = IR$$

$$V = IR \qquad V = I(R_{1}+R_{2})$$

$$PV = nk_{B}T \qquad \rho = \frac{AR}{L} \qquad \lambda = \left(\frac{m}{ne^{2}\mu_{0}}\right)^{1/2}$$

Training data to enable multiplication

Neural network to replicate the parabola

1) Shift the activation function into squared region

Neural network to replicate multiplication

1) Shift the activation function into squared region

2) Combine two activation functions in the square region

$$y = \left(\frac{x_1}{2} + \frac{x_2}{2}\right)^2 - \left(\frac{x_1}{2} - \frac{x_2}{2}\right)^2 = x_1 x_2$$

Node 1 Node 2

Can we do better with logarithms?

$$\log y = \underbrace{\log x_1 + \log x_2}_{\text{Node1}} = \log(x_1 x_2)$$
$$y = x_1 x_2$$

Becomes tricky when x<0, and cannot recover addition

Blend addition and multiplication into one kernel

$$y = D + \overline{\alpha} \, \overline{y} + \sum_{i} \frac{\alpha_{i} C_{i} (\vec{A}_{i} \cdot (\vec{x} - \vec{\overline{x}}) + B_{i})}{\left| \vec{A}_{i} \cdot (\vec{x} - \vec{\overline{x}}) + B_{i} \right| + |C_{i}|}$$

Blend addition and multiplication into one kernel

$$y = D + \bar{\alpha} \, \bar{y} + \sum_{i} \frac{\alpha_{i} C_{i} (\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i})}{|\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i}| + |C_{i}|}$$
$$- \left[\prod_{j} \operatorname{sign}(x_{j})\right] \sum_{i} \frac{(1 - \alpha_{i}) C_{i} B_{i} \prod_{j} |x_{j}|^{A_{ij}}}{|B_{i}| \prod_{j} |x_{j}|^{A_{ij}} + |C_{i}|}$$

Recover addition

$$y = D + \bar{\alpha} \, \bar{y} + \sum_{i} \frac{\alpha_{i} C_{i} (\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i})}{|\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i}| + |C_{i}|}$$
$$- \left[\prod_{j} \operatorname{sign}(x_{j})\right] \sum_{i} \frac{(1 - \alpha_{i}) C_{i} B_{i} \prod_{j} |x_{j}|^{A_{ij}}}{|B_{i}| \prod_{j} |x_{j}|^{A_{ij}} + |C_{i}|}$$

When α =1 and for small *x* recover addition

$$y = D + \overline{y} + \sum_{i} [\vec{A}_{i} \cdot (\vec{x} - \vec{\overline{x}}) + B_{i}]$$

Recover multiplication

$$y = D + \bar{\alpha} \, \bar{y} + \sum_{i} \frac{\alpha_{i} C_{i} (\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i})}{|\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i}| + |C_{i}|}$$
$$- \left[\prod_{j} \operatorname{sign}(x_{j})\right] \sum_{i} \frac{(1 - \alpha_{i}) C_{i} B_{i} \prod_{j} |x_{j}|^{A_{ij}}}{|B_{i}| \prod_{j} |x_{j}|^{A_{ij}} + |C_{i}|}$$

When α =0 and for small *x*≥0 recover multiplication

$$y=D-\sum_{i}B_{i}\prod_{j}x_{j}^{A_{ij}}$$

Addition-multiplication merging improves performance

$$y = D + \bar{\alpha} \, \bar{y} + \sum_{i} \frac{\alpha_{i} C_{i} (\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i})}{|\vec{A}_{i} \cdot (\vec{x} - \vec{\bar{x}}) + B_{i}| + |C_{i}|}$$
$$- \left[\prod_{j} \operatorname{sign}(x_{j})\right] \sum_{i} \frac{(1 - \alpha_{i}) C_{i} B_{i} \prod_{j} |x_{j}|^{A_{ij}}}{|B_{i}| \prod_{j} |x_{j}|^{A_{ij}} + |C_{i}|}$$

Addition-product merging improves performance by $\sim 50\%$

Materials designed

Nickel and molybdenum

Experiment and DFT for batteries

Steel for welding

More materials

Identified and corrected errors in materials database

Lubricants with molecular dynamics and experiments

Drug design

Action of a drug

Novartis dataset to benchmark machine learning

159 kinase proteins, 10000 compounds, data 5% complete

Data from ChEMBL Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

Impute missing entries to validate

Validate using a realistically split holdout data set, extrapolate to new chemical space

Quantitative structure-activity relationships

Molecular weight=183 Da

Quantitative structure-activity relationships

Predict one column at a time

Learn protein-protein correlations

Random forest

Predictions from pQSAR

Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

Google's attempt

Neural network with missing data

Predictions have an uncertainty

Validation data typically within one standard deviation

R^2 metric calculated with difference from mean

Impute 75% of data with smallest uncertainty

Impute 50% of data with smallest uncertainty

Impute 25% of data with smallest uncertainty

Improved performance by exploiting uncertainty

Improved performance by exploiting uncertainty

Different drugs can treat the same ailment

Reseller agreement with drug discovery software company Optibrium

Machine learning tool embedded into next generation of Optibrium software for release in October 2020

Merge different experimental quantities and computer simulations into a holistic design tool

Exploit mathematical knowledge about physical relationships

Designed and experimentally verified alloy for direct laser deposition

Improved predicability of drug design from $R^2=0.18$ to $R^2=0.93$