

Machine learning in materials design, oil exploration, and beyond

Gareth Conduit & Bartomeu Monserrat

EP14153898.3; US 2014/177578; GB1302743.8 EP14161255.6; US 2014/223465; GB1307533.8 EP14161529.4; US 2014/224885; GB1307535.3 EP14157622.3; amendment to US 2013/0052077 A1; GB1408536.9 Acta Materialia **61**, 3378 (2013) Intermetallics **48**, 62 (2014)

Theory of Condensed Matter Group, Department of Physics

Stone age: 3.4 million BC – 2000 BC

1.9 million BC Stone age

Bronze age: 2000 BC – 1000 BC

1.9 million BC Stone age

1200 BC Bronze age

Iron age: 1000 BC - 1850 AD

1.9 million BC Stone age

1200 BC Bronze age

300 BC Iron age

Steel age: 1850 AD - 1930 AD

1.9 million BC Stone age

1200 BC Bronze age

300 BC Iron age

1906 Steel age

Scientific age

1930s Plastics

1940s Semiconductors

Scientific age

1930s Plastics

1990s High temperature superconductors

1940s Semiconductors

2000s Graphene

Jet engine

Jet engine

Designing a new alloy – what is required?

Materials pipeline

and 4 different manufacturing processes

Materials pipeline

Two new tools

Neural network fitting & optimization

Neural network fitting & optimization

Neural network fitting & optimization

Optimizing the likelihood

EP14153898.3; US 2014/177578; GB1302743.8

Ni-base superalloy

Amendment to US 2013/0052077 A1; EP14157622.3; GB1408536.9

Ni-base superalloy

Amendment to US 2013/0052077 A1; EP14157622.3; GB1408536.9

Alloys discovered

Discovery algorithm EP14153898.3 US 2014/177578 GB1302743.8

Mo-Hf forging alloy EP14161255.6 US 2014/223465 GB1307533.8

Mo-Nb forging alloy EP14161529.4 US 2014/224885 GB1307535.3

RR1000 grain growth Acta Materialia, 61, 3378

Ni disc alloy EP14157622.3 US 2013/0052077 A2 GB1408536.9

Cr-Cr2Ta alloys Intermetallics 48, 62

Two new tools

Light emitting diodes

Cost Efficiency Color Band gap

Light emitting diodes

Cost Efficiency Color Band gap

Computer simulations

Band gap

Computational challenges

Inevitable approximations behind first principles simulations

Reducing number of simulations performed

Recursive learning

Recursive learning

Aluminum

Case study: III-V InGaN-base semiconductors

Case study: III-V InGaN-base semiconductors

Case study: III-V InGaN-base semiconductors

Three new tools

Ni-based alloy EP14157622.3 2013/0052077 A1 GB1408536.9

Mo-Hf alloy EP14161255.6 US 2014/223465 GB1307533.8

Mo-Nb alloy EP14161529.4 US 2014/224885 GB1307535.3

InGaN-based LED

Search for oil

Search for oil

Search for oil

Seismic survey

Seismic survey

Seismic survey

Prospects in the future

Three tools in machine analysis to maximize information

Maximum likelihood

Correlations between properties

Recursive learning

Concurrent materials design