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Iron age: 1000 BC – 1850 AD
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Steel age: 1850 AD – 1930 AD
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Designing a new alloy – what is required?
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Materials pipeline
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Two new tools
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Neural network fitting & optimization
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Optimizing the likelihood
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Ni-base superalloy
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Alloys discovered

Cr-Cr2Ta alloys
Intermetallics 48, 62

Discovery algorithm
EP14153898.3
US 2014/177578
GB1302743.8 

RR1000 grain growth
Acta Materialia, 61, 3378

Mo-Hf forging alloy
EP14161255.6
US 2014/223465
GB1307533.8 

Mo-Nb forging alloy
EP14161529.4
US 2014/224885
GB1307535.3 

Ni disc alloy
EP14157622.3
US 2013/0052077 A2
GB1408536.9 
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Computer simulations



  

Band gap



Computational challenges

Inevitable approximations behind first principles simulations

Reducing number of simulations performed



Correlations between properties
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Correlations between properties
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Calculate material property

Generate neural network models

Search for optimal solution
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Case study: III-V InGaN-base semiconductors
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Three new tools
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Prospects in the future

Three tools in machine analysis to maximize information

Maximum likelihood

Correlations between properties

Recursive learning

Concurrent materials design
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