

Breakthroughs in data driven materials design

EP14153898.3; US 2014/177578; GB1302743.8 EP14161255.6; US 2014/223465; GB1307533.8 EP14161529.4; US 2014/224885; GB1307535.3 EP14157622.3; amendment to US 2013/0052077 A1; GB1408536.9 Acta Materialia **61**, 3378 (2013) Intermetallics **48**, 62 (2014) Phys. Rev. B **90**, 184302 (2014)

Samsung GRO 2013 Theory of Condensed Matter Group, Department of Physics

Materials design using machine learning

Experimental data

First principles calc

Physical models

							1	AAGE						
			<u>O</u> ptir	miz	e			Iteratio	n					
K		F	^o robabil	ity I	0.000	Waiti	ng	Stagnat	ion					
ecification								Compositio	on ConcGal	InNI one				61
Property	Value	1	Error		Target			Element	Conc	Element	Conc	Element	Conc	1000
Density kg/m^3	1051.15	±	1.90	<	1330.00			N	0.500	AI	0.000	P	0.000	
ost \$/mol	193.78	±	0.27	<	400.00			Ga	0.375	As	0.000	In	0.125	
land gap min e∀	2.66	±	0.00	>	2.45			Sb	0.000	Bi	0.000			
fficacy photophic %	37.39	±	0.25	>	41.00									
fficacy s (blue) %	78.69	±	0.39	>	70.00									
arrier density	1.50	±	0.01	>	0.41									
and gap max eV	2.66	±	0.00	<	2.95									
irect band gap	1.00	±	0.00	>	0.80									
	1.87	+	0 00	>	0.00									

Alloys

Semiconductors

NCM battery

Oil discovery

Schematic of a jet engine

Designing a new alloy – what is required?

Materials design pipeline

Two new tools in the materials design pipeline

Neural network fitting & optimization

Neural network fitting & optimization

Neural network fitting & optimization

Experimental verification of a Ni-base superalloy

Amendment to US 2013/0052077 A1; EP14157622.3; GB1408536.9

Experimental verification of a Ni-base superalloy

Amendment to US 2013/0052077 A1; EP14157622.3; GB1408536.9

Alloys discovered

Discovery algorithm EP14153898.3 US 2014/177578 GB1302743.8

Mo-Hf forging alloy EP14161255.6 US 2014/223465 GB1307533.8

Mo-Nb forging alloy EP14161529.4 US 2014/224885 GB1307535.3

RR1000 grain growth Acta Materialia, 61, 3378

Ni disc alloy EP14157622.3 US 2013/0052077 A2 GB1408536.9

Cr-Cr2Ta alloys Intermetallics 48, 62

Two new tools in the materials design pipeline

InGaN-base semiconductors for blue LEDs

Three new tools in the materials design pipeline

Recursive learning in neural networks

Recursive learning in neural networks

Four new tools in the materials design pipeline

Unification of approaches

Nickel-Cobalt-Manganese (NCM) battery materials

Nickel-Cobalt-Manganese (NCM-424) battery materials

$LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$

Approach: Lego: previous approach

153153000 possible permutations =42000 years

Only examine order that fits into the unit cell

Approach: characterize with a local order matrix

Approach: characterize with a local order matrix

Recursive learning

Recursive learning

Lattice constants

Predictions from the neural network

Structure	a (Å)	c (Å)
LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ neural net	2.851	14.269
LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ experiment	2.866	14.254

Structure	a (Å)	c (Å)
LiNiO ₂	2.9108	14.1099
LiCoO ₂	2.8473	13.9214
LiMnO ₂	2.7614	14.7740
LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ layered	2.8827	14.1067

Local order matrix

Matrix element	Optimal	Expected if random
N _{Co-Co}	0.34	0.75
N _{Ni-Ni}	0.16	0.75
N _{Mn-Mn}	0.09	0.75
N _{Li-Li}	0.08	0.75
N _{Co-Ni}	2.5	2.25
N _{Co-Mn}	0.2	2.25
N _{Ni-Mn}	3.4	2.25
N _{Ni-Li}	0.32	2.25
N _{Co-Li}	0.21	2.25
N _{Mn-Li}	1.37	2.25
N _{Ni}	1.82	0
N _{Co}	0.02	0
N _{Mn}	0.01	0

Local order matrix within a single unit cell

Matrix element	Optimal	Achievable in single unit cell
N _{Co-Co}	0.34	1
N _{Ni-Ni}	0.16	0
N _{Mn-Mn}	0.09	1
N Li-Li	0.08	0
N _{Co-Ni}	2.5	2
N _{Co-Mn}	0.2	0
N _{Ni-Mn}	3.4	3
N _{Ni-Li}	0.32	1
N _{Co-Li}	0.21	0
N _{Mn-Li}	1.37	1
N _{Ni}	1.82	1
N _{Co}	0.02	0
N _{Mn}	0.01	1

Four representative unit cells

<i>E</i> =-18430.0eV	<i>E</i> =-18428.2eV	<i>E</i> =-18428.1eV	<i>E</i> =-18429.0eV	Experiment
<i>a</i> =2.863Å	<i>a</i> =2.852Å	<i>a</i> =2.857Å	<i>a</i> =2.860Å	<i>a</i> =2.866Å
c=14.212Å	<i>c</i> =14.274Å	<i>c</i> =14.254Å	c=14.221Å	<i>a</i> =14.254Å

How many calculations are required

Prospects for the future

Test four new tools uniquely unified within a materials design tool to maximize learning from data

Build on these platforms to respond to future GRO and Samsung collaboration needs

Continue high-level interaction with SAIT Europe and SAIT HQ teams to work on most relevant needs and outcomes