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The modern-day blacksmith



Machine learning to

Model systems where the data is sparse

Merge data, images, computer simulations, and physical laws 

Reduce costly experiments to accelerate discovery



Black box machine learning for materials design
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Train the machine learning
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Machine learning predicts material properties
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Combustor in a jet engine



Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

10 entries



Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability

Use 1000 weldability entries to understand complex composition → weldability model

1000 entries



Use weldability to predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations give composition → defects extrapolation

10 entries1000 entries



Elemental cost < 25 $kg-1

Density < 8500 kgm-3

Defects < 0.15% defects

Oxidation resistance < 0.3 mgcm-2

γ content > 75 wt%

Phase stability > 99 wt%

γ’ solvus > 1000˚C

Thermal resistance > 0.04 KΩ-1m-3

Yield stress at 900˚C > 200 MPa

Tensile strength at 900˚C > 300 MPa

Tensile elongation at 700˚C > 8%

1000hr stress rupture at 800˚C > 100 MPa

Fatigue life at 500 MPa, 700˚C > 105 cycles

Target properties



Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni Expose 0.8 THT 1300ºC

Composition and processing variables



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost < 25 $kg-1
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Oxidation resistance < 0.3 mgcm-2
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Phase stability > 99 wt%
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Target γ content



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost < 25 $kg-1

Density < 8500 kgm-3

Defects < 0.15% defects

Oxidation resistance < 0.3 mgcm-2

γ content > 75 wt%

Phase stability > 99 wt%

γ’ solvus > 1000˚C

Thermal resistance > 0.04 KΩ-1m-3

Yield stress at 900˚C > 200 MPa

Tensile strength at 900˚C > 300 MPa

Tensile elongation at 700˚C > 8%

1000hr stress rupture at 800˚C > 100 MPa

Fatigue life at 500 MPa, 700˚C > 105 cycles

Target phase stability



Deleterious phases formed

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Elemental cost < 25 $kg-1

Density < 8500 kgm-3

Defects < 0.15% defects

Oxidation resistance < 0.3 mgcm-2

γ content > 75 wt%

Phase stability > 99 wt%

γ’ solvus > 1000˚C

Thermal resistance > 0.04 KΩ-1m-3

Yield stress at 900˚C > 200 MPa

Tensile strength at 900˚C > 300 MPa

Tensile elongation at 700˚C > 8%

1000hr stress rupture at 800˚C > 100 MPa

Fatigue life at 500 MPa, 700˚C > 105 cycles

Target defect density



Defect detection

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Testing the defect density

Design
parameter

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Lubricants
for electric cars

Heat exchanger
& shape memory
alloy applications



Open Source Malaria contest



Action of a drug

Drug Protein Effect



Action of a drug

Drug Protein Effect



Predictions have an uncertainty
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Validation data typically within one standard deviation

A
ct

iv
ity

Drug 1 Drug 2 Drug 3 Drug 4



R² metric calculated with difference from mean
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Impute 75% of data with smallest uncertainty
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Impute 50% of data with smallest uncertainty
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Impute 25% of data with smallest uncertainty
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Improved performance by exploiting uncertainty

High accuracy

Low accuracy



Focus on compounds with low uncertainty

High accuracy

Low accuracy



Different drugs can treat the same ailment



Open Source Malaria experimental validation

Journal of Medicinal Chemistry 64, 16450 (2021)

Optibrium & Intellegens Davy Guan Exscientia Molomics

0.647 µM



Open Source Malaria other compounds

Optibrium & Intellegens Davy Guan Exscientia Molomics

0.647 µM >25 µM 10.9 µM >25 µM

Journal of Medicinal Chemistry 64, 16450 (2021)



Summary

Merge simulation with experimental data and exploit property-property relationships to 

circumvent missing data, designed an experimentally verified alloy for 3d printing

Exploited uncertainty to predict drug most probable drug

Generic approach applied to materials, batteries, pharmaceuticals, and beyond

Taken to market through startup Intellegens as Alchemite Analytics™ and with partners 

Optibrium and Ansys

intellegens
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