Theoretical Physics Theory of Condensed Matter

Gareth Conduit

Physics at Work 2007

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions

2 Applications in TCM

- Quantum mechanics
- TCM
- Superconductivity

ъ

< ロ > < 同 > < 回 > .

What is it?

Examples

- Rôle of observations
- Mathematics
- Predictions
- 2 Applications in TCM
 - Quantum mechanics
 - TCM
 - Superconductivity

ヘロト ヘ戸ト ヘヨト ヘ

э

Can you name any physicists?

ヘロト 人間 とくほとく ほとう

æ

▲ロト ▲圖ト ▲ ヨト ▲ ヨト -

Can you name any physicists?

Can you name any physicists?

・ロト ・個ト ・ヨト ・ヨト

What is it?

Examples

Rôle of observations

- Mathematics
- Predictions

2 Applications in TCM

- Quantum mechanics
- TCM
- Superconductivity

ヘロト ヘ戸ト ヘヨト ヘ

э

æ

イロト イポト イヨト イヨト

Galileo's experiment

• Can you spot the pattern?

3

Galileo's experiment

• Physics is about pattern recognition

- Experiments give quantitative clues
- Theory must explain observations
- Must make new predictions
- Unify understanding of different phenomenal

Time = 0 seconds Time = 1 second	Time/s	Distance/m
Time = 2 seconds	1	1
	2	4
Time = 3 seconds	3	9
	4	16
	5	25

- Physics is about pattern recognition
 - Experiments give quantitative clues
 - Theory must explain observations
 - Must make new predictions
 - Unify understanding of different phenomena

Time = 0 seconds Time = 1 second	Time/s	Distance/m
Time = 2 seconds	1	1
	2	4
Time = 3 seconds	3	9
	4	16
	5	25

- Physics is about pattern recognition
 - Experiments give quantitative clues
 - Theory must explain observations
 - Must make new predictions
 - Unify understanding of different phenomena

Time = 0 seconds Time = 1 second	Time/s	Distance/m
Time = 2 seconds	1	1
	2	4
Time = 3 seconds	3	9
	4	16
	5	25

- Physics is about pattern recognition
 - Experiments give quantitative clues
 - Theory must explain observations
 - Must make new predictions
 - Unify understanding of different phenomena

Thue = 0 seconds Time = 1 second	Time/s	Distance/m
Time = 2 seconds	1	1
	2	4
Time = 3 seconds	3	9
	4	16
	5	25

- Physics is about pattern recognition
 - Experiments give quantitative clues
 - Theory must explain observations
 - Must make new predictions
 - Unify understanding of different phenomena

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions
- 2 Applications in TCM
 - Quantum mechanics
 - TCM
 - Superconductivity

ヘロト ヘ戸ト ヘヨト ヘ

э

Mathematics is the natural language of Nature

Time/s	Distance/m
1	1
2	4
3	9
4	16
5	25

- What is the formula here?

・ロト ・回ト ・ヨト・

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects

Time/s	Distance/m
1	1
2	4
3	9
4	16
5	25

- What is the formula here?

ヘロト ヘアト ヘビト ヘビト

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects
- In-built logic system manipulations have well-defined ٩ rules

Time/s	Distance/m
1	1
2	4
3	9
4	16
5	25

- What is the formula here?
- Distance dropped = time

ヘロト ヘ戸ト ヘヨト ヘヨト

ヘロト ヘアト ヘビト ヘビト

The unreasonable effectiveness of Mathematics

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects
- In-built logic system manipulations have well-defined ٩ rules

Time/s	Distance/m	• What is the formula here?
1	1	
2	4	Distance dropped = time
3	9	squared
4	16	
5	25	• Or $d = t^2$

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects
- In-built logic system manipulations have well-defined rules

Time/s	Distance/m	
1	1	-
2	4	
3	9	
4	16	
5	25	

- What is the formula here?
- Distance dropped = time squared

・ロン・(理)・・ヨン・ヨン 三連

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects
- In-built logic system manipulations have well-defined rules

Time/s	Distance/m	
1	1	
2	4	
3	9	
4	16	
5	25	

- What is the formula here?
- Distance dropped = time squared

ヘロト ヘアト ヘビト ヘビト

- Mathematics is the natural language of Nature
- Compact and simple expressions of complicated objects
- In-built logic system manipulations have well-defined ٩ rules

Time/s	Distance/m	What
1	1	
2	4	Distar
3	9	squar
4	16	
5	25	Or d =

- is the formula here?
- nce dropped = time ed

< ロ > < 同 > < 回 > .

• Or
$$d = t^2$$

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions
- 2 Applications in TCM
 - Quantum mechanics
 - TCM
 - Superconductivity

ヘロト ヘ戸ト ヘヨト ヘ

크 > 크

"Nothing yet ... How about you, Newton?"

- Can we use this for other falling bodies and projectiles? — Yes
- t² distance dropped means constant acceleration, g, due to gravity
- In free space, only force is gravity, which acts vertically.
- Horizontal motion is motion at constant speed

"Nothing yet ... How about you, Newton?"

- Can we use this for other falling bodies and projectiles? — Yes
- t² distance dropped means constant acceleration, g, due to gravity
- In free space, only force is gravity, which acts vertically.
- Horizontal motion is motion at constant speed

"Nothing yet ... How about you, Newton?"

- Can we use this for other falling bodies and projectiles? — Yes
- t² distance dropped means constant acceleration, g, due to gravity
- In free space, only force is gravity, which acts vertically.
- Horizontal motion is motion at constant speed

< < >> < </p>

"Nothing yet ... How about you, Newton?"

- Can we use this for other falling bodies and projectiles? — Yes
- t² distance dropped means constant acceleration, g, due to gravity
- In free space, only force is gravity, which acts vertically.
- Horizontal motion is motion at constant speed

< < >> < </p>

Figure: Path of a projectile

- Vertical motion:
- $y = v \sin \theta t \frac{1}{2}gt^2$
- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

ヘロト ヘ戸ト ヘヨト ヘ

프 > 프

Figure: Path of a projectile

Vertical motion:

•
$$y = v \sin \theta t - \frac{1}{2}gt^2$$

- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

Figure: Path of a projectile

• Vertical motion:

•
$$y = v \sin \theta t - \frac{1}{2}gt^2$$

- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

Figure: Path of a projectile

• Vertical motion:

•
$$y = v \sin \theta t - \frac{1}{2}gt^2$$

- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

э

Figure: Path of a projectile

• Vertical motion:

•
$$y = v \sin \theta t - \frac{1}{2}gt^2$$

- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

<<p>(日)

프 > 프

Figure: Path of a projectile

Vertical motion:

•
$$y = v \sin \theta t - \frac{1}{2}gt^2$$

- Horizontal motion:
- $x = v \cos \theta t$
- Equation for trajectory is a quadratic

(日)

э

Getting to the Moon

- Same ideas are enough to allow us to send a rocket to the Moon
- Can calculate precise trajectory for a rocket
- We can use theory when experiments are either difficult, expensive or dangerous (or all three!)
- For example to calculate

the optimal amount of fuel needed for the Moon-landings

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions

2 Applications in TCM

- Quantum mechanics
- TCM
- Superconductivity

(日)

э

Quantum mechanics

- Matter consists of many interacting particles
- Quantum mechanics describes the world on an atomic scale
- It can predict the properties of matter
- This includes gases, liquids, solutions, metals, crystals, polymers....

"Inside" diamond

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions

2 Applications in TCM

- Quantum mechanics
- TCM
- Superconductivity

・ロト ・回ト ・ヨト ・

э

Theory of Condensed Matter

- Carbon-based semiconductors — flat panel displays
- Aggregated carbon nanorods (ACNR) - a material harder than diamond
- Drug design
- Room temperature superconductors
- Solid state data storage

A zeolite catalyst

What is it?

- Examples
- Rôle of observations
- Mathematics
- Predictions

2 Applications in TCM

- Quantum mechanics
- TCM
- Superconductivity

<<p>(日)

э

Superconductivity

- Some materials lose all electrical resistance at very low temperatures
- Superconductors possess other interesting and counter-intuitive properties
- Superconductivity is purely quantum mechanical effect
- Yet to understand fully high temperature superconductors

Levitating magnet (and sumo wrestler)

< ロ > < 同 > < 三 >

Conclusions

- Theoretical science is an important companion to experiments
- Theorists work on a wide range of problems in both universities and industry
- A great many important theoretical problems remain unsolved!

Crystal structure of penicillin