

Materials design with artificial intelligence

Gareth Conduit

TCM Group, Department of Physics

Approaches to materials design

Combine databases with neural networks

Combine databases with neural networks

Combine databases with neural networks

Combining likelihood

Schematic of an engine

In press for Materials & Design (2017)

Target properties

Cost < 33.7 \$kg⁻¹ < 8281 kgm⁻³ Density y' content < 50.4 vol%Phase stability > 99.0 vol% > 10^{3.9} cycles Fatigue life Yield stress > 752.2 MPa Ultimate tensile strength > 960.0 MPa 300hr stress rupture > 674.5 MPa Cr activity > 0.14 y' solvus > 983°C **Tensile elongation** > 11.6%

Proposed alloy

Cr:15.8

Ti: 3.0

Co: 20.0

Mo: 0.5

Mn: 0.2

W: 0.5

Si: 0.2

Ta: 4.9

Nb: 1.1

AI: 2.4

C: 0.02

Zr: 0.18

Ni: 47.2

900°C

30 hours

Microstructure

Testing the yield stress

Testing the yield stress

Testing the yield stress

Testing the oxidation resistance

High temperature alloys discovered

Cr-Cr₂Ta alloys Intermetallics, 48, 62

Ni alloy In press for Materials & Design (2017)

Ni disc alloy EP14157622 US 2013/0052077 A2

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Mo-Hf forging alloy EP14161255 US 2014/223465

RR1000 grain growth Acta Materialia, 61, 3378

Ni alloy for additive manufacture

Mo-Nb forging alloy EP14161529 US 2014/224885

Materials design

3D printed alloy for combustors Designed from 7 data points

Materials databases Found 792 errors

Materials design

Low temperature thermometer

Increased drug data available 200-times

Materials design

Battery design with DFT and experimental data

Designing lubricants with DFT and experimental data

Additive manufacturing from molecular dynamics and experimental data

- Used artificial intelligence to discover materials and drugs
- Handle fragmented data
- Merge experiments and simulations into holistic design tool
- Worked with 7 different companies, formed startup intellegens