Accelerate Al

BUSINESS & INNOVATION

The Future of Al Gathers Here.

Sept 19 - 22 | London

I 3 ENCLOSED FOR THE COLUMN

Imputation of assay activity data using deep learning

Tom Whitehead, Peter Hunt, Matt Segall, Gareth Conduit

Neural network algorithm to

Reduce the need for experiments and **accelerate** drug discovery

Utilise **all available** information: computer simulations and real-life measurements

Impute values from sparse data

Generic with proven applications in drug design and materials discovery

Action of a drug

Action of a drug

Novartis dataset to benchmark machine learning

159 kinase proteins, 10000 compounds, data 5% complete

Data from ChEMBL Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

Want to impute missing entries

Data from ChEMBL Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

Want to impute missing entries

Validate using a realistically split holdout data set, extrapolate to new chemical space

QSAR: quantitative structure-activity relationships

Molecular weight=183 Da

QSAR: quantitative structure-activity relationships

Standard methods learn chemical descriptor-protein correlations

QSAR: quantitative structure-activity relationships

Standard methods learn chemical descriptor-protein correlations

Deep learning also learns the strong protein-protein correlations

Random forest

Predictions from pQSAR

Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

Predictions by the neural network

Predicted activities have an uncertainty

Validation data within one standard deviation

*R*² metric calculated with difference from mean

Impute 75% of data with smallest uncertainty

Impute 50% of data with smallest uncertainty

Impute 25% of data with smallest uncertainty

Different drugs can treat the same ailment

Improved performance by exploiting uncertainties

Improved performance by exploiting uncertainties

Improved performance by exploiting uncertainties

Collaboration with Optibrium

Neural networks for materials design

Materials designed

Summary

Impute values in sparse matrix to high accuracy, enables identification of **new hits** and activity profiling of compounds

Understand and exploit **Uncertainties** to dial-in on most confident results

Reduce the need for experiments and accelerate discovery

