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About

Machine learning software to aid experimental design

Merge and aggregate all sources of data: experimental, 
computational, and analytical

Predictive models reduce costs and accelerate discovery 
process
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Traditional experimental design

Process is expert driven, subjective, and iterative through 
trial and improvement

Process takes ~20 years and specialist alloys cost >$10m 
to develop, drugs cost >$1bn
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Standard machine learning

Standard algorithms exploit composition-property 
correlations

Composition Properties
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Alchemite™ machine learning on sparse data

Standard algorithms exploit composition-property 
correlations

Alchemite™ predicts from available inputs: 
property-property correlations and computer 
simulations

Typical experimental data is 0.2% complete so algorithm 
must handle missing data
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Optimized design process

Reduce costs - 90% reduction in experiments and fewer 
measurements for expensive quantities

Accelerate discovery and validation to 2 years
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Schematic of a jet engine
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Combustor in a jet engine
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Direct laser deposition requires new alloys
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Black box for materials design

Composition

DLD suitability

Weldability

Fatigue
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Train from existing data

Composition

DLD suitability

Weldability

Fatigue
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Predict to design new materials
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Little data to discover new materials

Only 10 results available for suitability for direct laser 
deposition

Simplest possible machine learning model is a straight 
line

y = mx + c
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Little data to discover new materials

Only 10 results available for suitability for direct laser 
deposition

Simplest possible machine learning model is a 
hyperplane

y = m1x1 + m2x2 + m3x3 + … + m30x30 + c

Mathematical impossibility to fit 31 variables with 10 
pieces of data
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Case study: alloy for direct laser deposition
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Direct laser deposition is similar to welding

Direct laser 
deposition

Welding
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Lack of data for laser deposition
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Large amount of welding data
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Simple welding-deposition relationship
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Welding data guides extrapolation
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Standard machine learning

DLD suitability

Weldability

Fatigue

Composition



intellegens.ai

Holistic machine learning for materials design
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DLD suitability
Weldability
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Maximize likelihood of alloy exceeding targets
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Targets for direct laser deposition alloy

Elemental cost < 25 $kg-1

Density < 8500 kgm-3

γ’ content < 25 wt%
Oxidation resistance < 0.3 mgcm-2

DLD suitability < 0.15% defects
Phase stability > 99.0 wt%
γ’ solvus > 1000˚C
Thermal resistance > 0.04 KΩ-1m-3

Yield stress at 900˚C > 200 MPa
Tensile strength at 900˚C > 300 MPa
Tensile elongation at 700˚C > 8%
1000hr stress rupture at 800˚C > 100 MPa
Fatigue life at 500 MPa, 700˚C > 105 cycles
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Composition of alloy for direct laser deposition

Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni balance Expose 0.8 THT 1230ºC
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Experimental validation: microscope
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Experimental validation: defects

Design 
parameter
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Experimental validation: yield stress

Design 
parameter
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Experimental validation: oxidation resistance

Materials & Design 168, 107644 (2019)
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Nickel & moly alloys Batteries Steels of welding

Metal-organic framework Concrete Pharmaceutical

Further materials design
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Future opportunities: Integrated software

Load data1

Training2

Design3
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Design and interrogate new materials
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Manage and share models
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Zoo of materials databases
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Labor intensive to harvest data
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Universal API would ease access
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OPTiMaDe

A RESTful API to access leading electronic structure 
materials databases

Supported by CECAM to now extend to molecular 
dynamics and bio-simulations

http://www.optimade.org/
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Machine learning for materials design

Merge sparse databases to deliver deep insights into new 
materials

Designed and experimentally verified alloy for direct 
laser deposition, and other alloys and drugs

Contact ben@intellegens.ai
Website https://intellegens.ai 
Demo https://app.intellegens.ai/steel_optimise
Papers https://www.intellegens.ai/paper.html


