

Materials discovery with artificial intelligence

Gareth Conduit

TCM Group, Department of Physics

Approaches to materials design

Schematic of a jet engine

Designing a new alloy: what is required?

Multidimensional design space

and 4 different manufacturing processes

Sample data

►%C

Modeling the data

Exceeding the target

►%C

Maximizing likelihood of exceeding the target

►%C

Microstructure

Microstructure

Testing the yield stress

Testing the yield stress

Testing the yield stress

Testing the oxidation resistance

Ni disc alloy EP14157622 US 2013/0052077 A2

Discovery algorithm EP14153898 US 2014/177578

Ni disc alloy EP14157622 US 2013/0052077 A2

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Ni disc alloy EP14157622 US 2013/0052077 A2

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Mo-Hf forging alloy EP14161255 US 2014/223465

Ni disc alloy EP14157622 US 2013/0052077 A2

Mo-Nb forging alloy EP14161529 US 2014/224885

Cr-Cr₂Ta alloys Intermetallics, 48, 62

Combustor alloy GB1408536

Discovery algorithm EP14153898 US 2014/177578

Mo-Hf forging alloy EP14161255 US 2014/223465

Ni disc alloy EP14157622 US 2013/0052077 A2

RR1000 grain growth Acta Materialia, 61, 3378

Mo-Nb forging alloy EP14161529 US 2014/224885

Merging simulation and experiment

Merging simulation and experiment

Merging simulation and experiment

Exploiting material correlations

Alloy for direct laser deposition

Combustor liner

Exploiting material correlations

Alloy for direct laser deposition

Lithium cathode materials

Nickel-Cobalt-Manganese (NCM) battery materials

NCM-424 battery structure

$LiNi_{0.4}Co_{0.2}Mn_{0.4}O_2$

Traditional approach

 $0.4Ni \rightarrow 7.2 \text{ atoms}$ $0.2Co \rightarrow 3.6 \text{ atoms}$ $0.4Mn \rightarrow 7.2 \text{ atoms}$

> 153153000 possible permutations =42000 years

Access any composition Information on order Li migration

Approach: characterize with a local order matrix

Approach: characterize with a local order matrix

Recursive learning

Recursive learning

How many calculations are required

Ν

Local order matrix

Matrix element	Optimal	From NMR
N _{Co-Co}	0.34	0.2
N _{Ni-Ni}	0.16	0.3
N _{Mn-Mn}	0.09	0.0
N Li-Li	0.08	0.0
N _{Co-Ni}	2.5	2.1
N _{Co-Mn}	0.2	0.1
N _{Ni-Mn}	3.4	3.1
N _{Ni-Li}	0.32	0.2
N _{Co-Li}	0.21	0.1
N _{Mn-Li}	1.37	1.2
N _{Ni}	1.82	1.1
N _{Co}	0.02	0.3
N _{Mn}	0.01	0.1

Database contains $>10^7$ separate entries

Example: steels

Example: steels

Example: steels

Used artificial intelligence in materials discovery

Discovered four new alloys, experimentally verified, now real-world testing

Merge simulations and experiments into holistic design tool

Materials database verification and analysis