

Machine learning for battery discovery

Gareth Conduit

- Train from sparse datasets
- Merge simulations, physical laws, and experimental data
- **Reduce** the need for expensive experimental development
- Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug design

Black box machine learning for materials design

Training machine learning

60555606

Machine learning for materials design

Two sources of information in the design pipeline

Experiment

Accurate Quantities of interest Lack of data Expensive

Computational

Less accurate Atom level insights Perform on demand Cheap to perform

Merge the information with machine learning

Experiment

Accurate Quantities of interest Lack of data Expensive Less accurate Atom level insights Perform on demand Cheap to perform

Nickel-Cobalt-Manganese (NCM) battery materials

Design variables and target properties

Concentration of Ni, Mn, Co Location of atoms

Charge cycles Voltage **Total charge** Volume change Li migration Ground state Charge rate

Nickel-Cobalt-Manganese NCM-424 material

Nickel-Cobalt-Manganese NCM-424 material

Calculate properties with **DFT** simulations

153153000 permutations =42000 years

Only examine order that fits into the unit cell

Design variables and target properties with DFT

Concentration of Ni, Mn, Co Location of atoms

Volume change Li migration Voltage Ground state

Approach: characterize with a local order matrix

Nyellow-yellow=1

 $N_{yellow-red}=2$

Approach: characterize with a local order matrix

Train on initial results

Guided calculation for recursive learning

Lattice constants

How many calculations are required

Machine learning guidance requires 5-times fewer calculations

Predicting the lattice constant from DFT

Structure	a (Å)	c (Å)
LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ prediction	2.863	14.257
LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ experiment	2.866	14.254

Local order matrix within a single unit cell

Matrix element	Optimal	Achievable in cell
N _{Co-Co}	0.34	1
N _{Ni-Ni}	0.16	0
N _{Mn-Mn}	0.09	1
N _{Li-Li}	0.08	0
N _{Co-Ni}	2.5	2
N _{Co-Mn}	0.2	0
N _{Ni-Mn}	3.4	3
N _{Ni-Li}	0.32	1
N _{Co-Li}	0.21	0
N _{Mn-Li}	1.37	1
N _{Ni}	1.82	1
N _{Co}	0.02	0
N _{Mn}	0.01	1

Machine learning can predict cells inaccessible to DFT

Tracking Li migration

+ Li

Original structure

Relax atoms

+ Li ,

Reinsert Li

Relax atoms

Li migration optimal structures

Ground state

82% robust

Li migration optimal structures displacing 4xLi

Ground stateConfiguration 1Configuration 2Configuration 3Configuration 482% robust100% robust100% robust100% robust100% robust

Merge computational and experimental data

Merge computational and experimental data

Merge computational simulations and experimental data Design battery materials Guided simulations and experiments leads to 5x speedup Predict complex cells inaccessible to DFT