

# The modern day blacksmith

Gareth Conduit

Theory of Condensed Matter group

Train from **Sparse** datasets

Merge simulations, physical laws, and experimental data

Reduce the need for expensive experimental development

Accelerate materials and drugs discovery

Generic with proven applications in materials discovery and drug design

## Schematic of a jet engine



# Combustor in a jet engine



## Direct laser deposition requires new alloys











#### Laser



#### Electricity

## Insufficient data for processability



## Welding is analogous to direct laser deposition





## Simple processability-welding relationship



## Merging properties with the neural network







## Schematic of a jet engine



## Target properties

Elemental cost < 25 \$kg<sup>-1</sup> Density < 8500 kgm<sup>-3</sup> y' content < 25 wt% Oxidation resistance < 0.3 mgcm<sup>-2</sup> Processability < 0.15% defects Phase stability > 99.0 wt% y' solvus  $> 1000^{\circ}C$ Thermal resistance > 0.04 K $\Omega^{-1}$ m<sup>-3</sup> Yield stress at 900°C > 200 MPa Tensile strength at 900°C > 300 MPa Tensile elongation at  $700^{\circ}C > 8\%$ 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10<sup>5</sup> cycles

## Composition







Co: 4%





W: 1.2%



Zr: 0.05%



Nb: 3%



AI: 2.9%





B: 0.01%



#### Expose 0.8 THT 1300°C







## Microstructure



## Testing the processability: horizontal printing



### Testing the processability: horizontal printing



#### Testing the oxidation resistance



## Printing components for an engine



Materials & Design 168, 107644 (2019)



## More materials designed

# Nickel and molybdenum





Steel for welding





Steel for turbos

Experiment and DFT for batteries







# Application to chemicals and drugs

Design concrete mixtures on site

Metal organic framework

Lubricants with molecular dynamics and experiments

Drug design









We create chemistry







## Action of a drug



## Novartis dataset to benchmark machine learning

159 kinase proteins, 10000 compounds, data 5% complete



Data from ChEMBL Martin, Polyakov, Tian, and Perez, J. Chem. Inf. Model. 57, 2077 (2017)

## Impute missing entries to validate

Validate using a realistically split holdout data set, extrapolate to new chemical space



## Quantitative structure-activity relationships





#### Molecular weight=183 Da



## Quantitative structure-activity relationships



## Predict one column at a time



## Learn protein-protein correlations



## Learn protein-protein correlations





Journal of Chemical Information and Modeling, 59, 1197 (2019)

## Predictions have an uncertainty



## Validation data typically within one standard deviation



## $R^2$ metric calculated with difference from mean



## Impute 75% of data with smallest uncertainty



## Impute 50% of data with smallest uncertainty



## Impute 25% of data with smallest uncertainty



## Improved performance by exploiting uncertainty



## Different drugs can treat the same ailment









#### **Open Source Malaria contest**





## **Open Source Malaria entrants**

| Entrant               | Precision | Result               |
|-----------------------|-----------|----------------------|
| Molomics              | 82%       | Winner (company)     |
| Davy Guan             | 82%       | Winner (non-company) |
| Optibrium/Intellegens | 81%       | Second place         |
| Exscientia            | 81%       | Second place         |
| Slade Matthews        | 64%       | Runner-up            |
| Auromind              | 58%       | Runner-up            |
| Raymond Lui           | 58%       | Runner-up            |
| KCL                   | 36%       | Runner-up            |
| Interlinked TX        | 36%       | Runner-up            |

#### Focus on compounds with low uncertainty



## Open Source Malaria experimental validation



Optibrium/Intellegens 0.647 µM

#### Open Source Malaria other compounds



Ν

Ν

#### Other compounds have large uncertainty



Products and consultancy projects for materials and chemicals with Intellegens

Reseller agreement with drug discovery software company Optibrium

Machine learning tool embedded into next generation of Optibrium software for release in October 2020





Merge different experimental quantities and computer simulations into a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Designed experimentally verified drug in Open Source Malaria competition

Taken to market through startup Intellegens